Canopy effect refers to the phenomenon in which moisture accumulates underneath an impervious cover.A canopy effect can lead to full saturation of the soil underneath the impervious cover.A recent theoretical study separates the canopy effect into two types.The first one is caused by evaporation-condensation in unsaturated soils,while the second one is induced by freezing-enhanced vapour transfer in unsaturated soils.To validate experimentally these two types of canopy effect and to reveal their mechanisms,moisture-migration experiments were carried out,using a newly developed laboratory apparatus for unsaturated frozen soils.Six conditions were applied to the calcareous sand,with different initial water contents and boundary temperatures.The results show that water content in the upper portion of the sample increased under an upward temperature gradient,and the increment of water content was greater if the soil was subjected to freezing.For the freezing cases,the depth of the peak water content was in line with the freezing front.And the greater the initial water content,the more the water content accumulated at the freezing front.However,a lower cooling rate seemed to facilitate vapour migration.For the unfrozen cases,the water content in the upper portion of the sample also increased;and the increases became more apparent with a higher initial moisture content.The temperature gradient can also inhibit the vapour migration.A less steep temperature gradient always resulted in a more notable inhibition effect.Test results seem to verify the theory of the canopy effect.