Numerical Solution for Fractional-Order Differential Systems with Time-Domain and Frequency-Domain Methods

被引:1
|
作者
Ke Xiao
机构
关键词
Analytical solution; frequency domain; fractional order; numerical solution; time domain;
D O I
暂无
中图分类号
TP13 [自动控制理论];
学科分类号
摘要
For a general nonlinear fractional-order differential equation, the numerical solution is a good way to approximate the trajectory of such systems. In this paper, a novel algorithm for numerical solution of fractional-order differential equations based on the definition of Grunwald-Letnikov is presented. The results of numerical solution by using the novel method and the frequency-domain method are compared, and the limitations of frequency-domain method are discussed.
引用
收藏
页码:294 / 298
页数:5
相关论文
共 50 条
  • [1] Numerical Solution for Fractional-order Differential Systems with Time Domain and Frequency Domain Methods
    Xiao, Ke
    Zhou, Shangbo
    Zhang, Weiwei
    2008 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLS 1 AND 2: VOL 1: COMMUNICATION THEORY AND SYSTEM, 2008, : 1263 - 1267
  • [2] Numerical Solution for Fractional-order Differential Systems with Time Domain and Frequency Domain Methods
    Xiao, Ke
    Zhou, Shangbo
    Zhang, Weiwei
    2008 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLS 1 AND 2: VOL 1: COMMUNICATION THEORY AND SYSTEM, 2008, : 742 - 746
  • [3] Time-domain and frequency-domain differential calorimetry
    Ferrari, C
    Salvetti, G
    Tognoni, E
    Tombari, E
    JOURNAL OF THERMAL ANALYSIS, 1996, 47 (01): : 75 - 85
  • [4] Numerical methods for time-domain and frequency-domain analysis: applications in engineering
    Tamas, R. D.
    MODERN TECHNOLOGIES IN INDUSTRIAL ENGINEERING (MODTECH2015), 2015, 95
  • [5] High order discontinuous Galerkin methods for time-domain and frequency-domain nanophotonics
    Chaumont-Frelet, T.
    Descombes, S.
    Gobe, A.
    Moghtader, Mostafa Javadzadeh
    Lanteri, S.
    Scheid, C.
    Schmitt, N.
    Viquerat, J.
    METANANO 2019, 2020, 1461
  • [6] CALCULATING FREQUENCY-DOMAIN DATA BY TIME-DOMAIN METHODS
    DEHLER, M
    DOHLUS, M
    WEILAND, T
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 1993, 6 (01) : 19 - 27
  • [7] A note on time-domain simulation of feedback fractional-order systems
    Hwang, C
    Leu, JF
    Tsay, SY
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (04) : 625 - 631
  • [8] Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems
    Tavazoei, M. S.
    Haeri, M.
    IET SIGNAL PROCESSING, 2007, 1 (04) : 171 - 181
  • [9] A Simple Frequency-domain Tuning Method of Fractional-order PID Controllers for Fractional-order Delay Systems
    Xu Li
    Lifu Gao
    International Journal of Control, Automation and Systems, 2022, 20 : 2159 - 2168
  • [10] A Simple Frequency-domain Tuning Method of Fractional-order PID Controllers for Fractional-order Delay Systems
    Li, Xu
    Gao, Lifu
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (07) : 2159 - 2168