THE DIMENSION FOR RANDOM SUB-SELF-SIMILAR SET

被引:0
|
作者
胡迪鹤 [1 ]
张晓敏 [2 ]
机构
[1] School of Mathematics and Statistics,Yunnan University
[2] Faculty of Science,Ningbo University
基金
中国国家自然科学基金;
关键词
Random sub-self-similar set; random shift set; Hausdorff dimension; exact Hausdorff measure function; Hausdorff metric;
D O I
暂无
中图分类号
O189.12 [维论];
学科分类号
070104 ;
摘要
In this article,the Hausdorff dimension and exact Hausdorff measure function of any random sub-self-similar set are obtained under some reasonable conditions.Several examples are given at the end.
引用
收藏
页码:561 / 573
页数:13
相关论文
共 50 条
  • [11] Dimension spectra of random subfractals of self-similar fractals
    Gu, Xiaoyang
    Lutz, Jack H.
    Mayordomo, Elvira
    Moser, Philippe
    ANNALS OF PURE AND APPLIED LOGIC, 2014, 165 (11) : 1707 - 1726
  • [12] The Hausdorff dimension of a class of random self-similar fractal trees
    Croydon, D. A.
    ADVANCES IN APPLIED PROBABILITY, 2007, 39 (03) : 708 - 730
  • [13] DIMENSION OF SLICES THROUGH A SELF-SIMILAR SET WITH INITIAL CUBIC PATTERN
    Wen, Zhixiong
    Wu, Wen
    Xi, Lifeng
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (02) : 473 - 487
  • [14] The Hausdorff dimension of multivariate operator-self-similar Gaussian random fields
    Soenmez, Ercan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (02) : 426 - 444
  • [15] INVARIANCE PRINCIPLES FOR SELF-SIMILAR SET-INDEXED RANDOM FIELDS
    Bierme, Hermine
    Durieu, Olivier
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (11) : 5963 - 5989
  • [16] Sufficient condition for a topological self-similar set to be a self-similar set
    Ni, Tianjia
    Wen, Zhiying
    TOPOLOGY AND ITS APPLICATIONS, 2024, 358
  • [17] Fractal dimension of a random invariant set
    Langa, JA
    Robinson, JC
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 85 (02): : 269 - 294
  • [18] Hausdorff dimension of a random invariant set
    Debussche, A
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (10): : 967 - 988
  • [19] On the dimension of self-similar sets
    Simon, KR
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2002, 10 (01) : 59 - 65
  • [20] Information fractal dimension of Random Permutation Set
    Zhao, Tong
    Li, Zhen
    Deng, Yong
    CHAOS SOLITONS & FRACTALS, 2023, 174