Power Compensation for ICRF Heating in EAST

被引:0
作者
陈根
秦成明
毛玉周
赵燕平
袁帅
张新军
机构
[1] InstituteofPlasmaPhysics,ChineseAcademyofSciences
关键词
EAST; ICRF heating; power compensation;
D O I
暂无
中图分类号
TL631.24 [];
学科分类号
082701 ;
摘要
The source system covering a working frequency range of 24 MHz to 70 MHz with a total maximum output power of 12 MW has already been fabricated for Ion Cyclotron Range of Frequency(ICRF) heating in EAST from 2012. There are two continuous wave(CW) antennas consisting of four launching elements each fed by a separate 1.5 MW transmitter. Due to the strong mutual coupling among the launching elements, the injection power for launching elements should be imbalance to keep the k||(parallel wave number) spectrum of the launcher symmetric for ICRF heating. Cross power induced by the mutual coupling will also induce many significant issues,such as an uncontrollable phase of currents in launching elements, high voltage standing wave ratio(VSWR), and impedance mismatching. It is necessary to develop a power compensation system for antennas to keep the power balance between the feed points. The power balance system consists of two significant parts: a decoupler and phase control. The decoupler helps to achieve ports isolation to make the differential phase controllable and compensate partly cross power. After that, the differential phase of 0 or π will keep the power balance of two feed points completely. The first power compensation system consisting of four decouplers was assembled and tested for the port B antenna at the working frequency of 35 MHz. With the application of the power compensation system, the power balance, phase feedback control, and voltage standing wave ratio(VSWR) had obviously been improved in the 2015 EAST campaign.
引用
收藏
页码:870 / 874
页数:5
相关论文
共 50 条
[41]   Schemes for ICRF Heating of High-Density Core Plasma in LHD [J].
Saito, Kenji ;
Seki, Ryosuke ;
Kamio, Shuji ;
Kasahara, Hiroshi ;
Seki, Tetsuo .
PLASMA AND FUSION RESEARCH, 2020, 15
[42]   Real-time impedance matching system for ICRF heating in LHD [J].
Saito, K. ;
Takahashi, C. ;
Yokota, M. ;
Nomura, G. ;
Shimpo, F. ;
Seki, T. ;
Kasahara, H. ;
Kumazawa, R. ;
Yoon, J. S. ;
Kwak, J. G. ;
Zhao, Y. ;
Mutoh, T. ;
Komori, A. .
FUSION ENGINEERING AND DESIGN, 2008, 83 (2-3) :245-248
[43]   Differential power compensation's adiabatic calorimetry method based on scanning heating mode [J].
Yuan M.-Y. ;
Xu Q.-Y. ;
Ding J. ;
Ye S.-L. .
Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2021, 55 (11) :2100-2107
[44]   Physical design and recent experimental results of the new ICRF antenna on EAST [J].
Yang, Hua ;
Zhang, Xinjun ;
Yuan, Shuai ;
Qin, Chengming ;
Zhang, Wei ;
Urbanczyk, G. ;
Qian, Jinping ;
Liu, Lunan ;
Wang, Gaoxiang ;
Chen, Qingqing .
PLASMA SCIENCE & TECHNOLOGY, 2024, 26 (06)
[45]   Quasilinear evolution of multiple non-thermal ion distributions in ICRF heating [J].
Jaeger, E. F. ;
Berry, L. A. ;
Harvey, R. W. ;
Phillips, C. K. ;
Myra, J. R. ;
Smithe, D. N. ;
Batchelor, D. B. ;
Bonoli, P. T. ;
Carter, M. D. ;
Choi, M. ;
D'Azevedo, E. ;
D'Ippolito, D. A. ;
Valeo, E. J. ;
Wright, J. C. .
RADIO FREQUENCY POWER IN PLASMAS, 2007, 933 :443-+
[46]   Experiments using ICRF Heating Antenna with Toroidal Phase Control Capability on LHD [J].
Kumazawa, R. ;
Seki, T. ;
Mutoh, T. ;
Saito, K. ;
Kasahara, H. ;
Nomura, G. ;
Shimpo, F. ;
Zhao, Y. ;
Kwak, J. G. .
RADIO FREQUENCY POWER IN PLASMAS: PROCEEDINGS OF THE 19TH TOPICAL CONFERENCE, 2011, 1406
[47]   PROGRESS IN STEADY-STATE PLASMA OPERATION USING ICRF HEATING ON LHD [J].
Kumazawa, R. ;
Mutoh, T. ;
Saito, K. ;
Seki, T. ;
Kasahara, H. ;
Tokitani, M. ;
Masuzaki, S. ;
Ashikawa, N. ;
Nakamura, Y. ;
Kubo, S. ;
Shimozuma, T. ;
Yoshimura, Y. ;
Igami, H. ;
Takahashi, H. ;
Takeiri, Y. ;
Tsumori, K. ;
Osakabe, M. ;
Ikeda, K. ;
Nagaoka, K. ;
Kaneko, O. ;
Goto, M. ;
Sato, K. ;
Chikaraishi, H. ;
Ida, K. ;
Nagayama, Y. ;
Zhao, Y. ;
Kwak, J. G. ;
Yoon, J. S. .
FUSION SCIENCE AND TECHNOLOGY, 2010, 58 (01) :524-529
[48]   Modelling of JET hybrid plasmas with emphasis on performance of combined ICRF and NBI heating [J].
Gallart, D. ;
Mantsinen, M. J. ;
Challis, C. ;
Frigione, D. ;
Graves, J. ;
Belonohy, E. ;
Casson, F. ;
Czarnecka, A. ;
Eriksson, J. ;
Garcia, J. ;
Goniche, M. ;
Hellesen, C. ;
Hobirk, J. ;
Jaquet, P. ;
Joffrin, E. ;
Krawczyk, N. ;
King, D. ;
Lennholm, M. ;
Lerche, E. ;
Pawelec, E. ;
Saez, X. ;
Sertoli, M. ;
Sips, G. ;
Solano, E. ;
Tsalas, M. ;
Vallejos, P. ;
Valisa, M. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amicucci, L. .
NUCLEAR FUSION, 2018, 58 (10)
[49]   Direct toroidal torque driven by ICRF heating and its dependence on the plasma rotation [J].
Bilato, R. ;
Brambilla, M. ;
Fable, E. ;
Poli, E. .
NUCLEAR FUSION, 2017, 57 (07)
[50]   Study of long-pulse plasma experiment using ICRF heating in LHD [J].
Seki, T. ;
Mutoh, T. ;
Kumazawa, R. ;
Saito, K. ;
Nakamura, Y. ;
Sakamoto, M. ;
Watanabe, T. ;
Kubo, S. ;
Shimozuma, T. ;
Yoshimura, Y. ;
Igami, H. ;
Ohkubo, K. ;
Takeiri, Y. ;
Oka, Y. ;
Tsumori, K. ;
Osakabe, M. ;
Ikeda, K. ;
Nagaoka, K. ;
Kaneko, O. ;
Miyazawa, J. ;
Morita, S. ;
Narihara, K. ;
Shoji, M. ;
Masuzaki, S. ;
Goto, M. ;
Morisaki, T. ;
Peterson, B. J. ;
Sato, K. ;
Tokuzawa, T. ;
Ashikawa, N. ;
Nishimura, K. ;
Funaba, H. ;
Chikaraishi, H. ;
Takeuchi, N. ;
Notake, T. ;
Ogawa, H. ;
Torii, Y. ;
Shimpo, F. ;
Nomura, G. ;
Yokota, M. ;
Takahashij, C. ;
Kato, A. ;
Takase, Y. ;
Kasahara, H. ;
Ichimura, M. ;
Higaki, H. ;
Zhao, Y. P. ;
Kwak, J. G. ;
Yamada, H. ;
Kawahata, K. .
FUSION SCIENCE AND TECHNOLOGY, 2006, 50 (02) :186-191