Power Compensation for ICRF Heating in EAST

被引:0
作者
陈根
秦成明
毛玉周
赵燕平
袁帅
张新军
机构
[1] InstituteofPlasmaPhysics,ChineseAcademyofSciences
关键词
EAST; ICRF heating; power compensation;
D O I
暂无
中图分类号
TL631.24 [];
学科分类号
082701 ;
摘要
The source system covering a working frequency range of 24 MHz to 70 MHz with a total maximum output power of 12 MW has already been fabricated for Ion Cyclotron Range of Frequency(ICRF) heating in EAST from 2012. There are two continuous wave(CW) antennas consisting of four launching elements each fed by a separate 1.5 MW transmitter. Due to the strong mutual coupling among the launching elements, the injection power for launching elements should be imbalance to keep the k||(parallel wave number) spectrum of the launcher symmetric for ICRF heating. Cross power induced by the mutual coupling will also induce many significant issues,such as an uncontrollable phase of currents in launching elements, high voltage standing wave ratio(VSWR), and impedance mismatching. It is necessary to develop a power compensation system for antennas to keep the power balance between the feed points. The power balance system consists of two significant parts: a decoupler and phase control. The decoupler helps to achieve ports isolation to make the differential phase controllable and compensate partly cross power. After that, the differential phase of 0 or π will keep the power balance of two feed points completely. The first power compensation system consisting of four decouplers was assembled and tested for the port B antenna at the working frequency of 35 MHz. With the application of the power compensation system, the power balance, phase feedback control, and voltage standing wave ratio(VSWR) had obviously been improved in the 2015 EAST campaign.
引用
收藏
页码:870 / 874
页数:5
相关论文
共 50 条
[11]   Tunable biasing magnetic field design of ferrite tuner for ICRF heating system in EAST [J].
Xu, Manman ;
Song, Yuntao ;
Chen, Gen ;
Zhao, Yanping ;
Mao, Yuzhou ;
Liu, Guang ;
Peng, Zhen .
PLASMA SCIENCE & TECHNOLOGY, 2017, 19 (11)
[12]   Optimization Study of ICRF Hydrogen Minority Heating in a Deuterium Plasma of EAST [J].
张新军 ;
姚方伟 .
Plasma Science and Technology, 2015, (06) :454-457
[13]   LHCD and ICRF heating experiments in H-mode plasmas on EAST [J].
Zhang, X. J. ;
Zhao, Y. P. ;
Wan, B. N. ;
Ding, B. J. ;
Xu, G. S. ;
Gong, X. Z. ;
Li, J. G. ;
Lin, Y. ;
Taylor, G. ;
Noterdaeme, J. M. ;
Braun, F. ;
Wukitch, S. ;
Magne, R. ;
Litaudon, X. ;
Kumazawa, R. ;
Kasahara, H. .
RADIOFREQUENCY POWER IN PLASMAS, 2014, 1580 :49-56
[14]   Optimization Study of ICRF Hydrogen Minority Heating in a Deuterium Plasma of EAST [J].
Zhang Xinjun ;
Yao Fangwei .
PLASMA SCIENCE & TECHNOLOGY, 2015, 17 (06) :454-457
[15]   High Power RF Transmitters for ICRF Applications on EAST [J].
毛玉周 ;
袁帅 ;
赵燕平 ;
张新军 ;
陈根 ;
RKUMAZAWA ;
程艳 ;
王磊 ;
琚松青 ;
邓旭 ;
秦成明 ;
杨磊 .
Plasma Science and Technology, 2013, (03) :261-265
[16]   High Power RF Transmitters for ICRF Applications on EAST [J].
Mao Yuzhou ;
Yuan Shuai ;
Zhao Yanping ;
Zhang Xinjun ;
Chen Gen ;
Kumazawa, R. ;
Cheng Yan ;
Wang Lei ;
Ju Songqing ;
Deng Xu ;
Qin Chengming ;
Yang Lei .
PLASMA SCIENCE & TECHNOLOGY, 2013, 15 (03) :261-265
[17]   The RF conditioning of vacuum feedthrough for high power ICRF heating in KSTAR [J].
Wang, S. J. ;
Kim, H. J. ;
Kim, J. H. ;
Park, B. H. ;
Kim, S. H. ;
Kwak, J. G. .
FUSION ENGINEERING AND DESIGN, 2015, 101 :22-27
[18]   ICRF HEATING SYSTEM IN LHD [J].
Mutoh, T. ;
Kumazawa, R. ;
Seki, T. ;
Saito, K. ;
Kasahara, H. ;
Shimpo, F. ;
Nomura, G. .
FUSION SCIENCE AND TECHNOLOGY, 2010, 58 (01) :504-514
[19]   Development of power combination system for high-power and long-pulse ICRF heating in LHD [J].
Saito, K. ;
Wang, S. J. ;
Wi, H. H. ;
Kim, H. J. ;
Kamio, S. ;
Nomura, G. ;
Seki, R. ;
Seki, T. ;
Kasahara, H. ;
Mutoh, T. .
FUSION ENGINEERING AND DESIGN, 2019, 146 :256-260
[20]   Recent ICRF coupling experiments on EAST [J].
杨宇晴 ;
张新军 ;
赵燕平 ;
秦成明 ;
程艳 ;
毛玉周 ;
杨桦 ;
王健华 ;
袁帅 ;
王磊 ;
琚松青 ;
陈根 ;
邓旭 ;
张开 ;
万宝年 ;
李建刚 ;
宋云涛 ;
龚先祖 ;
钱金平 ;
张涛 .
Plasma Science and Technology, 2018, 20 (04) :111-115