The critical case for a Berestycki-Lions theorem

被引:0
作者
ZHANG Jian [1 ]
ZOU WenMing [1 ]
机构
[1] Department of Mathematical Sciences, Tsinghua University
关键词
meromorphic function; normal family; the sequence of omitted functions;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
We consider the existence of the ground states solutions to the following Schrdinger equation:△u+V(x)u=f(u),u∈H1(RN),where N 3 and f has critical growth.We generalize an earlier theorem due to Berestycki and Lions about the subcritical case to the current critical case.
引用
收藏
页码:541 / 554
页数:14
相关论文
共 8 条
  • [1] Existence of a ground state solution for a nonlinear scalar field equation with critical growth[J] . Claudianor O. Alves,Marco A. S. Souto,Marcelo Montenegro.Calculus of Variations and Partial Differential Equations . 2012 (3)
  • [2] Ground states of nonlinear Schr?dinger equations with potentials[J] . Yongqing Li,Zhi-Qiang Wang,Jing Zeng.Annales de l’Institut Henri Poincare / Analyse non lineaire . 2006 (6)
  • [3] Existence and multiplicity results for some superlinear elliptic problems on RN[J] . Thomas Bartsch,Zhi Qiang Wang.Communications in Partial Differential Equations . 1995 (9-10)
  • [4] On a class of nonlinear Schr?dinger equations[J] . Paul H. Rabinowitz.Zeitschrift für angewandte Mathematik und Physik ZAMP . 1992 (2)
  • [5] Nonlinear scalar field equations, I existence of a ground state[J] . H. Berestycki,P. -L. Lions.Archive for Rational Mechanics and Analysis . 1983 (4)
  • [6] ACTION MINIMA AMONG SOLUTIONS TO A CLASS OF EUCLIDEAN SCALAR FIELD EQUATIONS
    COLEMAN, S
    GLASER, V
    MARTIN, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 58 (02) : 211 - 221
  • [7] EXISTENCE OF SOLITARY WAVES IN HIGHER DIMENSIONS
    STRAUSS, WA
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) : 149 - 162
  • [8] The concentration-compactness principle in the calculus of variations. The locally compact case, Part II .2 Lions PL. Annales de l’Institut Henri Poincare - Analyse non lineaire . 1984