INFINITELY MANY SOLUTIONS OF DIRICHLET PROBLEM FOR p-MEAN CURVATURE OPERATOR

被引:0
作者
Chen Zhihui Shen YaotianDept.of Appl.Math.
机构
基金
中国国家自然科学基金;
关键词
mean curvature operator; critical points; (PSC) condition;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
The existence of infinitely many solutions of the following Dirichlet problem for p-mean curvature operator:-div((1+|u| 2) p-22u)=f(x,u),\ x∈Ω, u∈W 1,p 0(Ω),is considered, where Ω is a bounded domain in R n(n>p>1) with smooth boundary Ω.Under some natural conditions together with some conditions weaker than (AR) condition,we prove that the above problem has infinitely many solutions by a symmetric version of the Mountain Pass Theorem if f(x,u)|u| p-2u→+∞ as u→∞.
引用
收藏
页码:161 / 172
页数:12
相关论文
共 5 条
  • [1] Asymptotically "linear "Dirichlet problem for the p -Laplacian, Nonlinear Anal. Li Gongbao,Zhou Huansong. TMA Journal . 2001
  • [2] Dual variational methods in critical points theory and applications, J. Ambrosetti,A. and Rabinowitz,P. H. Journal of Functional Analysis . 1973
  • [3] On the existence of infinitely many critical points of the even functional∫F (x ,u ,D u) dx in W1,p 0 ( ), Acta Math. Shen Yaotian,Guo Xinkang. Science . 1987
  • [4] Un criterio de esistenza per i punti critici su varietà illimitate, Rc.Ist . Lomb. Sci. Cerami,G. Lett . 1978
  • [5] Nontrivial critical points of the functional∫F (x ,u ,D u) dx , in Chinese,Acta Math. Shen Yaotian,Guo Xinkang. Science . 1990