雅鲁藏布蛇绿岩——事实与臆想

被引:103
作者
吴福元
刘传周
张亮亮
张畅
王建刚
纪伟强
刘小驰
机构
[1] 中国科学院地质与地球物理研究所岩石圈演化国家重点实验室
关键词
超慢速扩张; 新特提斯洋; 蛇绿岩; 雅鲁藏布; 西藏;
D O I
暂无
中图分类号
P588.125 [];
学科分类号
070901 ;
摘要
位于西藏南部的雅鲁藏布蛇绿岩在我国研究程度最高,在国际上也有较高的知名度。该蛇绿岩东西延伸约2000km,代表了印度和亚洲之间消失的新特提斯洋,是确定上述两大板块间缝合线存在的重要岩石学标志。本文根据作者近几年的野外考察,结合前人发表的资料发现,该蛇绿岩有如下方面的重要特点。(1)各蛇绿岩剖面均发育大规模的橄榄岩体,超镁铁岩的分布远远大于镁铁质岩石。这些超镁铁岩体尽管在岩性上以方辉橄榄岩为主,但出现大量二辉橄榄岩;(2)镁铁质堆晶辉长岩不发育;(3)不存在席状辉绿岩墙群,取而代之的是顺层侵入在橄榄岩中的辉长岩-辉绿岩岩席。部分情况下,辉绿岩还侵入到玄武岩之中;(4)蛇绿岩上部发育有一定厚度的玄武岩,但玄武岩与橄榄岩之间经常被辉绿岩席所占据,部分情况下玄武岩与橄榄岩直接接触。(5)地幔橄榄岩与镁铁质岩石在Sr-Nd同位素和形成时代上存在显著差别;(6)辉长岩与辉绿岩形成在120~130Ma的狭窄时间段内,并具有类似亏损地幔的地球化学特点。上述资料表明,雅鲁藏布蛇绿岩中的超镁铁岩和镁铁质岩形成于不同时代,且在成因上不具任何联系。根据这些资料,本文提出,该区蛇绿岩的地幔橄榄岩可能为大陆岩石圈地幔。早白垩世期间,北侧亚洲大陆南缘位置的岩石圈由于拉张而使深部岩石圈地幔物质向上剥露。随着岩石圈拆离和减薄的不断进行,软流圈地幔发生减压熔融,形成目前见到的玄武岩和辉长-辉绿岩席。在拉张作用的高峰期,早期亏损的大陆岩石圈地幔在经历交代作用后发生部分熔融形成少量玻安质熔体。因此,雅鲁藏布蛇绿岩并不能代表新特提斯大洋,它与经典的蛇绿岩定义相差甚远。考虑镁铁质岩石发育有限的特点,雅鲁藏布蛇绿岩代表了一种超慢速扩张的洋盆形成环境,其扩张速率甚至慢于目前广为人知的西Alps地区。根据全球蛇绿岩的情况,该蛇绿岩可被定义为日喀则型,是目前超慢速扩张洋盆的端元代表。
引用
收藏
页码:293 / 325
页数:33
相关论文
共 150 条
[51]  
Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet.[J].Fu-Yuan Wu;Wei-Qiang Ji;Chuan-Zhou Liu;Sun-Lin Chung.Chemical Geology.2009, 1
[52]  
Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith; southern Tibet.[J].Wei-Qiang Ji;Fu-Yuan Wu;Sun-Lin Chung;Jin-Xiang Li;Chuan-Zhou Liu.Chemical Geology.2009, 3
[53]  
An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions.[J].Warren; J. M.;Shimizu; N.;Sakaguchi; C.;B. Dick; H. J.;Nakamura; E..Journal of Geophysical Research. Solid Earth.2009, 12
[54]  
A type sequence across an ancient magma-poor ocean–continent transition: the example of the western Alpine Tethys ophiolites.[J].Gianreto Manatschal;Othmar Müntener.Tectonophysics.2008, 1
[55]  
Structural architecture of the sheeted dike complex and extensional tectonics of the Jurassic Mirdita ophiolite; Albania.[J].Charity M. Phillips-Lander;Yildirim Dilek.LITHOS.2008, 1
[56]  
Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite; southern Tibet.[J].Shinji Yamamoto;Tsuyoshi Komiya;Kei Hirose;Shigenori Maruyama.LITHOS.2008, 3
[57]  
Refertilization of Jurassic oceanic peridotites from the Tethys Ocean — Implications for the Re–Os systematics of the upper mantle.[J].David van Acken;Harry Becker;Richard J. Walker.Earth and Planetary Science Letters.2008, 1
[58]  
Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd isotopic evidence and implications for crust–mantle relationships.[J].Othmar Müntener;Thomas Pettke;Laurent Desmurs;Martin Meier;Urs Schaltegger.Earth and Planetary Science Letters.2004, 1
[59]  
Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites; southern Tibet.[J]..Chemical Geology.2004, 3
[60]  
Petrology and geochemistry of mafic rocks from mélange and flysch units adjacent to the Yarlung Zangbo Suture Zone; southern Tibet.[J]..Chemical Geology.2004, 3