The degree of biholomorphic mappings between special domains in C~n preserving 0

被引:0
作者
NING JiaFu [1 ]
ZHOU XiangYu [2 ]
机构
[1] College of Mathematics and Statistics, Chongqing University
[2] Academy of Mathematics and Systems Science, Chinese Academy of Sciences
关键词
group action; degree of polynomial mapping; biholomorphic mapping; Bergman kernel; invariant domain;
D O I
暂无
中图分类号
O174.52 [整数函数论、亚纯函数论(半纯函数论)];
学科分类号
070104 ;
摘要
Let Gi be a closed Lie subgroup of U(n), ?i be a bounded Gi-invariant domain in C~n which contains 0, and O(C~n)Gi = C, for i = 1, 2. If f : ?1→ ?2 is a biholomorphism, and f(0) = 0, then f is a polynomial mapping(see Ning et al.(2017)). In this paper, we provide an upper bound for the degree of such polynomial mappings. It is a natural generalization of the well-known Cartan's theorem.
引用
收藏
页码:1077 / 1082
页数:6
相关论文
共 9 条
[1]  
On automorphisms of quasi-circular domains fixing the origin[J] . Feng Rong.Bulletin des sciences mathématiques . 2014
[2]  
Automorphisms of normal quasi-circular domains[J] . Atsushi Yamamori.Bulletin des sciences mathématiques . 2013
[3]   On invariant domains in certain complex homogeneous spaces [J].
Zhou, XY .
ANNALES DE L INSTITUT FOURIER, 1997, 47 (04) :1101-&
[4]  
Geometric invariant theory on Stein spaces[J] . Peter Heinzner.Mathematische Annalen . 1991 (1)
[6]  
Proper holomorphic mappings between circular domains[J] . Steven R. Bell.Commentarii Mathematici Helvetici . 1982 (1)
[7]   REDUCTIVE GROUP-ACTIONS ON STEIN-SPACES [J].
SNOW, DM .
MATHEMATISCHE ANNALEN, 1982, 259 (01) :79-97
[8]  
über das Randverhalten von holomorphen Automorphismen beschr?nkter Gebiete[J] . Wilhelm Kaup.Manuscripta Mathematica . 1970 (3)
[9]  
Les fonctions de deux variables complexes et le problème de représentation analytique .2 Cartan,H. J. de Math. Pures et Appl . 1931