OPTIMAL ERROR BOUNDS FOR THE CUBIC SPLINE INTERPOLATION OF LOWER SMOOTH FUNCTION(Ⅱ)

被引:0
作者
YE MAODONG
机构
关键词
ERROR; CUBIC; BOUNDS; FOR; FUNCTION; INTERPOLATION; LOWER; OF; OPTIMAL; SMOOTH;
D O I
暂无
中图分类号
O212 [数理统计];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
OPTIMALERRORBOUNDSFORTHECUBICSPLINEINTERPOLATIONOFLOWERSMOOTHFUNCTION(Ⅱ)YEMAODONGAbstract.Inthispaper,byusingtheexplicitexpre...
引用
收藏
页码:103 / 110
页数:8
相关论文
共 50 条
  • [21] Defocus optical transfer function: fast evaluation and lightweight storage based on cubic spline interpolation
    Budzinskiy, Stanislav
    Razgulin, Alexander
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2019, 36 (03) : 436 - 442
  • [22] A Full Smooth Semi-Support Vector Machine Based on the Cubic Spline Function
    Ma, Jinggai
    Zhang, Xiaodan
    PROCEEDINGS OF THE 2013 6TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2013), VOLS 1 AND 2, 2013, : 650 - 655
  • [23] Optimal cubic Lagrange interpolation: Extremal node systems with minimal Lebesgue constant
    Rack, Heinz-Joachim
    Vajda, Robert
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (02): : 151 - 171
  • [24] Bivariate spline interpolation with optimal approximation order
    Davydov, O
    Nürnberger, G
    Zeilfelder, F
    CONSTRUCTIVE APPROXIMATION, 2001, 17 (02) : 181 - 208
  • [25] H∞ optimal approximation for causal spline interpolation
    Nagahara, M.
    Yamamoto, Y.
    SIGNAL PROCESSING, 2011, 91 (02) : 176 - 184
  • [26] Bivariate spline interpolation with optimal approximation order
    O. Davydov
    G. Nürnberger
    F. Zeilfelder
    Constructive Approximation, 2001, 17 : 181 - 208
  • [27] An improved EMD based on cubic spline interpolation of extremum centers
    Huang, Jie
    Tang, Jian
    Zhang, Meijun
    Zhang, Xiaoming
    Han, Tao
    JOURNAL OF VIBROENGINEERING, 2015, 17 (05) : 2393 - 2409
  • [28] Visualization of positive and convex data by a rational cubic spline interpolation
    Sarfraz, M
    INFORMATION SCIENCES, 2002, 146 (1-4) : 239 - 254
  • [29] Positivity Preserving Interpolation of Positive Data by Cubic Trigonometric Spline
    Abbas, Muhammad
    Abd Majid, Ahmad
    Ali, Jamaludin Md.
    MATEMATIKA, 2011, 27 (01) : 41 - 50
  • [30] Error bounds for polynomial tensor product interpolation
    Bernhard Mößner
    Ulrich Reif
    Computing, 2009, 86 : 185 - 197