OPTIMAL ERROR BOUNDS FOR THE CUBIC SPLINE INTERPOLATION OF LOWER SMOOTH FUNCTION(Ⅱ)

被引:0
|
作者
YE MAODONG
机构
关键词
ERROR; CUBIC; BOUNDS; FOR; FUNCTION; INTERPOLATION; LOWER; OF; OPTIMAL; SMOOTH;
D O I
暂无
中图分类号
O212 [数理统计];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
OPTIMALERRORBOUNDSFORTHECUBICSPLINEINTERPOLATIONOFLOWERSMOOTHFUNCTION(Ⅱ)YEMAODONGAbstract.Inthispaper,byusingtheexplicitexpre...
引用
收藏
页码:103 / 110
页数:8
相关论文
共 50 条
  • [1] Optimal error bounds for the cubic spline interpolation of lower smooth function (I)
    Ye M.
    Applied Mathematics-A Journal of Chinese Universities, 1998, 13 (2) : 223 - 230
  • [2] Best error bounds of deficient quintic spline interpolation
    Rana, SS
    Dubey, YP
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1997, 28 (10) : 1337 - 1344
  • [3] Interpolation of Discrete Time Signals using Cubic Spline Function
    Hussain, Malik Zawwar
    Irshad, Misbah
    Sarfraz, Muhammad
    Zafar, Nousheen
    2015 19TH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION IV 2015, 2015, : 454 - 459
  • [4] Optimal knots allocation in the cubic and bicubic spline interpolation problems
    Idais, H.
    Yasin, M.
    Pasadas, M.
    Gonzalez, P.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 164 : 131 - 145
  • [5] On the error in surface spline interpolation of a compactly supported function
    Johnson, MJ
    KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2001, 28 (01): : 37 - 54
  • [6] Cubic Polynomial as Alternatives Cubic Spline Interpolation
    Nazren, A. R. A.
    Yaakob, Shahrul Nizam
    Ngadiran, R.
    Wafi, N. M.
    Hisham, M. B.
    ADVANCED SCIENCE LETTERS, 2017, 23 (06) : 5069 - 5072
  • [7] Cubic spline algorithms for orientation interpolation
    Kang, IG
    Park, FC
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 46 (01) : 45 - 64
  • [8] A polynomial smooth epsilon-support vector regression based on cubic spline interpolation
    任斌
    He Chunhong
    Liu Huijie
    Yang Lei
    Xie Guobo
    HighTechnologyLetters, 2014, 20 (02) : 187 - 194
  • [9] A polynomial smooth epsilon-support vector regression based on cubic spline interpolation
    Ren, Bin
    He, Chunhong
    Liu, Huijie
    Yang, Lei
    Xie, Guobo
    High Technology Letters, 2014, 20 (02) : 187 - 194
  • [10] Cubic spline interpolation with quasiminimal B-spline coefficients
    Lajos László
    Acta Mathematica Hungarica, 2005, 107 : 77 - 87