Artificial intelligence and kidney transplantation

被引:2
作者
Nurhan Seyahi [1 ]
Seyda Gul Ozcan [2 ]
机构
[1] Department of Nephrology, Istanbul University-Cerrahpa?a, Cerrahpa?a Medical Faculty
[2] Department of Internal Medicine, Istanbul University-Cerrahpa?a, Cerrahpa?a Medical Faculty
关键词
Artificial intelligence; Kidney transplantation; Machine learning; Neuronal networks; Deep learning; Support vector machines;
D O I
暂无
中图分类号
R699.2 [肾脏手术];
学科分类号
1002 ; 100210 ;
摘要
Artificial intelligence and its primary subfield, machine learning, have started to gain widespread use in medicine, including the field of kidney transplantation. We made a review of the literature that used artificial intelligence techniques in kidney transplantation. We located six main areas of kidney transplantation that artificial intelligence studies are focused on: Radiological evaluation of the allograft, pathological evaluation including molecular evaluation of the tissue, prediction of graft survival, optimizing the dose of immunosuppression, diagnosis of rejection, and prediction of early graft function. Machine learning techniques provide increased automation leading to faster evaluation and standardization, and show better performance compared to traditional statistical analysis. Artificial intelligence leads to improved computer-aided diagnostics and quantifiable personalized predictions that will improve personalized patient care.
引用
收藏
页码:277 / 289
页数:13
相关论文
共 43 条
  • [1] Patterns of 1,748 Unique Human Alloimmune Responses Seen by Simple Machine Learning Algorithms[J] . Vittoraki Angeliki G,Fylaktou Asimina,Tarassi Katerina,Tsinaris Zafeiris,Petasis George Ch,Gerogiannis Demetris,Kheav Vissal David,Carmagnat Maryvonnick,Lehmann Claudia,Doxiadis Ilias,Iniotaki Aliki G,Theodorou Ioannis.Frontiers in immunology . 2020
  • [2] The impact of deceased donor maintenance on delayed kidney allograft function: A machine learning analysis
    Costa, Silvana Daher
    Modelli de Andrade, Luis Gustavo
    Carvalho Barroso, Francisco Victor
    Costa de Oliveira, Claudia Maria
    de Francesco Daher, Elizabeth
    Branco Camurca Fernandes, Paula Frassinetti Castelo
    Esmeraldo, Ronaldo de Matos
    de Sandes-Freitas, Taina Veras
    [J]. PLOS ONE, 2020, 15 (02):
  • [3] Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection
    Pineda, Silvia
    Sur, Swastika
    Sigdel, Tara
    Nguyen, Mark
    Crespo, Elena
    Torija, Alba
    Meneghini, Maria
    Goma, Montse
    Sirota, Marina
    Bestard, Oriol
    Sarwal, Minnie M.
    [J]. KIDNEY INTERNATIONAL REPORTS, 2020, 5 (10): : 1706 - 1721
  • [4] A multimodal computer-aided diagnostic system for precise identification of renal allograft rejection: Preliminary results
    Shehata, Mohamed
    Shalaby, Ahmed
    Switala, Andrew E.
    El-Baz, Maryam
    Ghazal, Mohammed
    Fraiwan, Luay
    Khalil, Ashraf
    Abou El-Ghar, Mohamed
    Badawy, Mohamed
    Bakr, Ashraf M.
    Dwyer, Amy
    Elmaghraby, Adel
    Giridharan, Guruprasad
    Keynton, Robert
    El-Baz, Ayman
    [J]. MEDICAL PHYSICS, 2020, 47 (06) : 2427 - 2440
  • [5] Pretransplant Kinetics of Anti-HLA Antibodies in Patients on the Waiting List for Kidney Transplantation
    Togninalli, Matteo
    Yoneoka, Daisuke
    Kolios, Antonios G. A.
    Borgwardt, Karsten
    Nilsson, Jakob
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2019, 30 (11): : 2262 - 2274
  • [6] Generating automated kidney transplant biopsy reports combining molecular measurements with ensembles of machine learning classifiers
    Reeve, Jeff
    Boehmig, Georg A.
    Eskandary, Farsad
    Einecke, Gunilla
    Gupta, Gaurav
    Madill-Thomsen, Katelynn
    Mackova, Martina
    Halloran, Philip F.
    [J]. AMERICAN JOURNAL OF TRANSPLANTATION, 2019, 19 (10) : 2719 - 2731
  • [7] Deep Learning-Based Histopathologic Assessment of Kidney Tissue
    Hermsen, Meyke
    de Bel, Thomas
    den Boer, Marjolijn
    Steenbergen, Eric J.
    Kers, Jesper
    Florquin, Sandrine
    Roelofs, Joris J. T. H.
    Stegall, Mark D.
    Alexander, Mariam P.
    Smith, Byron H.
    Smeets, Bart
    Hilbrands, Luuk B.
    van der Laak, Jeroen A. W. M.
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2019, 30 (10): : 1968 - 1979
  • [8] Molecular phenotype of kidney transplant indication biopsies with inflammation in scarred areas
    Halloran, Philip F.
    Matas, Arthur
    Kasiske, Bertram L.
    Madill-Thomsen, Katelynn S.
    Mackova, Martina
    Famulski, Konrad S.
    [J]. AMERICAN JOURNAL OF TRANSPLANTATION, 2019, 19 (05) : 1356 - 1370
  • [9] Using machine learning and an ensemble of methods to predict kidney transplant survival
    Mark, Ethan
    Goldsman, David
    Gurbaxani, Brian
    Keskinocak, Pinar
    Sokol, Joel
    [J]. PLOS ONE, 2019, 14 (01):
  • [10] Computer-Aided Diagnostic System for Early Detection of Acute Renal Transplant Rejection Using Diffusion-Weighted MRI
    Shehata, Mohamed
    Khalifa, Fahmi
    Soliman, Ahmed
    Ghazal, Mohammed
    Taher, Fatma
    Abou El-Ghar, Mohamed
    Dwyer, Amy C.
    Gimel'farb, Georgy
    Keynton, Robert S.
    El-Baz, Ayman
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (02) : 539 - 552