Modeling and Optimization of Copper Flash Smelting Process Based on Neural Network

被引:2
|
作者
汪金良 [1 ]
张传福 [2 ]
曾青云 [3 ]
童长仁 [3 ]
张文海 [4 ]
机构
[1] School of Metallurgical Science and Engineering,Central South University,Changsha,Hunan ,China Faculty of Material and Chemistry Engineering,Jiangxi University of Science and Technology,Ganzhou,Jiangxi ,China
[2] School of Metallurgical Science and Engineering,Central South University,Changsha,Hunan ,China
[3] Faculty of Material and Chemistry Engineering,Jiangxi University of Science and Technology,Ganzhou,Jiangxi ,China
[4] China Nerin Engineering Co,LtdNanchang,Jiangxi
关键词
neural network; genetic algorithm; copper flash smelting; modeling; optimization;
D O I
暂无
中图分类号
TF811 [铜];
学科分类号
摘要
<正>The copper flash smelting process neural network model(CFSPNNM)was developed,its input layer includes eight nodes:oxygen grade(OG),oxygen volume per ton of concentrate(OVPTC),flux rate(FR)and quantifies of Cu,S,Fe,SiO2 and MgO in copper concentrate;output layer includes three nodes:matte grade,matte temperature and Fe/SiO2 in slag,and net structure was 8-13-10-3.Then,the internal relationship between the technological parameters and the objective parameters was built after the CFSPNNM was trained by using GA-BP algorithm.Moreover,the technological parameters were optimized by using genetic algorithms(GA)to make energy consumption the lowest.Simulation results showed that the CFSPNNM had high prediction precision and good generalization performance.Compared with the practical average data,the energy consumption can be reduced by 6.8% if the smelting process is controlled by adopting the optimized technological parameters.
引用
收藏
页码:105 / 109
页数:5
相关论文
共 7 条
  • [1] Neural network modeling for weld shape process of P-GMAW
    闫志鸿
    吴林
    张广军
    高洪明
    [J]. China Welding, 2007, (01) : 68 - 71
  • [2] 基于神经网络-遗传算法的CT-191合成工艺优化
    李祥高
    肖殷
    何莉莉
    [J]. 计算机与应用化学, 2005, (11) : 998 - 1000
  • [3] 基于遗传算法的最优参差码搜索
    陶海红
    王伶
    廖桂生
    [J]. 系统工程与电子技术, 2004, (06) : 711 - 713
  • [4] GA-BP算法及其在冰铜品位神经网络模型中的应用
    汪金良
    卢宏
    曾青云
    [J]. 江西有色金属, 2003, (03) : 39 - 42
  • [5] 镍闪速熔炼过程的平衡计算
    凌玲
    沈剑韵
    陆金忠
    李光
    [J]. 有色金属, 2000, (04) : 71 - 73
  • [6] 神经网络在冶金工业中的应用
    胡敏艺
    马荣骏
    [J]. 湖南有色金属, 2000, (05) : 16 - 19
  • [7] Holland J H.Adaptation in natural and artificial systems[K].Cambridge: MIT Press,1975