SPREADING SPEED IN THE FISHER-KPP EQUATION WITH NONLOCAL DELAY

被引:0
作者
田歌 [1 ]
王浩雨 [2 ]
王智诚 [1 ]
机构
[1] School of Mathematics and Statistics, Lanzhou University
[2] School of Information Science and Engineering, Lanzhou University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
This paper is concerned with the Fisher-KPP equation with diffusion and nonlocal delay. Firstly, we establish the global existence and uniform boundedness of solutions to the Cauchy problem. Then, we establish the spreading speed for the solutions with compactly supported initial data. Finally, we investigate the long time behavior of solutions by numerical simulations.
引用
收藏
页码:875 / 886
页数:12
相关论文
共 33 条
  • [1] STABILITY OF MONOSTABLE WAVES FOR A NONLOCAL EQUATION WITH DELAY AND WITHOUT QUASI-MONOTONICITY[J]. 刘克盼,杨赟瑞,杨扬.Acta Mathematica Scientia. 2019(06)
  • [2] 一类具有非线性发生率与时滞的非局部扩散SIR模型的行波解
    邹霞
    吴事良
    [J]. 数学物理学报, 2018, 38 (03) : 496 - 513
  • [3] GLOBAL STABILITY OF TRAVELING WAVEFRONTS FOR NONLOCAL REACTION-DIFFUSION EQUATIONS WITH TIME DELAY[J]. 杨兆星,张国宝.Acta Mathematica Scientia(English Series). 2018(01)
  • [4] Spreading speed in a food-limited population model with nonlocal delay[J] . Ge Tian,Zhi-Cheng Wang.Applied Mathematics Letters . 2020 (C)
  • [5] Propagation phenomena for partially degenerate nonlocal dispersal models in time and space periodic habitats[J] . Xiongxiong Bao,Wan-Tong Li.Nonlinear Analysis: Real World Applications . 2020 (C)
  • [6] Spreading Speed in A Nonmonotone Equation with Dispersal and Delay
    Liu, Xi-Lan
    Pan, Shuxia
    [J]. MATHEMATICS, 2019, 7 (03)
  • [7] Traveling waves for the nonlocal diffusive single species model with Allee effect
    Han, Bang-Sheng
    Wang, Zhi-Cheng
    Feng, Zhaosheng
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (01) : 243 - 264
  • [8] Traveling waves in the nonlocal KPP-Fisher equation: Different roles of the right and the left interactions[J] . Karel Hasik,Jana Kopfová,Petra Nábělková,Sergei Trofimchuk.Journal of Differential Equations . 2015
  • [9] On the nonlocal Fisher–KPP equation: steady states, spreading speed and global bounds[J] . Fran?ois Hamel,Lenya Ryzhik.Nonlinearity . 2014 (11)
  • [10] SLOWLY OSCILLATING WAVEFRONTS OF THE KPP-FISHER DELAYED EQUATION
    Hasik, Karel
    Trofimchuk, Sergei
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (09) : 3511 - 3533