Asymptotics for the Korteweg-de Vries-Burgers Equation

被引:0
|
作者
Nakao HAYASHI [1 ]
Pavel I.NAUMKIN [2 ]
机构
[1] Department of Mathematics,Graduate School of Science,Osaka University,Osaka,Toyonaka,560-0043,Japan
[2] Instituto de Matemáticas,UNAM Campus Morelia,AP 61-3(Xangari),Morelia CP 58089,Michoacán,Mexico
关键词
Korteweg-de Vries-Burgers equation; asymptotics for large time; large initial data;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
We study large time asymptotics of solutions to the Korteweg-de Vries-Burgers equationut+uux-uxx+uxx=0,x ∈ R,t>0.We are interested in the large time asymptotics for the case when the initial data have an arbitrarysize. We prove that if the initial data u0∈ Hs(R)∩ L1(R), where s >-1/2, then there exists a uniquesolution u(t,x)∈ C∞((0,∞);H∞(R))to the Cauchy problem for the Korteweg-de Vries-Burgersequation, which has asymptoticsu(t)=t-1/2fM((·)t-1/2+o(t-1/2)as t→∞,where fM is the self-similar solution for the Burgers equation. Moreover if xu0(x)∈L1(R),then the asymptotics are trueu(t)=t-1/2fM((·)t-1/2+O(t-1/2-γ),where γ∈(0,1/2).
引用
收藏
页码:1441 / 1456
页数:16
相关论文
共 50 条
  • [41] Inverse optimality of adaptive control for Korteweg-de Vries-Burgers equation
    Cai, Xiushan
    Lin, Yuhang
    Lin, Cong
    Liu, Leipo
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (02) : 486 - 493
  • [42] An Improved Perturbation Method to Study Korteweg-de Vries-Burgers Equation
    Zephania, C. F. Sagar
    Harisankar, P. C.
    Sil, Tapas
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (02)
  • [44] Asymptotics of solutions to the boundary value problem for the Korteweg-de Vries-Burgers equation on a half-line
    Hayashi, N
    Kaikina, EI
    Shishmarev, IA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) : 343 - 370
  • [45] Note on the single-shock solutions of the Korteweg-de Vries-Burgers equation
    Ioannis Kourakis
    Sharmin Sultana
    Frank Verheest
    Astrophysics and Space Science, 2012, 338 : 245 - 249
  • [46] WELL-POSEDNESS OF KORTEWEG-DE VRIES-BURGERS EQUATION ON A FINITE DOMAIN
    Li, Jie
    Liu, Kangsheng
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2017, 48 (01): : 91 - 116
  • [47] Instability of periodic waves for the Korteweg-de Vries-Burgers equation with monostable source
    Folino, Raffaele
    Naumkina, Anna
    Plaza, Ramon G.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 467
  • [48] REDUCED BASIS FINITE ELEMENT METHODS FOR THE KORTEWEG-DE VRIES-BURGERS EQUATION
    Piao, Guang-Ri
    Yao, Fuxia
    Zhao, Wenju
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (2-3) : 369 - 385
  • [49] Boundary-value problem for the Korteweg-de Vries-Burgers type equation
    Nakao Hayashi
    Elena I. Kaikina
    H. Francisco Ruiz Paredes
    Nonlinear Differential Equations and Applications NoDEA, 2001, 8 : 439 - 463
  • [50] The generalized Korteweg-de Vries-Burgers equation in H2(R)
    Dlotko, Tomasz
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (03) : 721 - 732