Nearly Comonotone Approximation of Periodic Functions

被引:0
作者
G.A.Dzyubenko [1 ]
机构
[1] Yu. A.Mitropolsky International Mathematical Center of NASU
关键词
Periodic functions; comonotone approximation; trigonometric polynomials; Jacksontype estimates;
D O I
暂无
中图分类号
O174.41 [逼近论];
学科分类号
070104 ;
摘要
Suppose that a continuous 27r-periodic function f on the real axis changes its monotonicity at points y;:-π≤ y;<y;<… < y;<π,s ∈ IN.In this PaPer,for each n≥N,a trigonometric polynomial P;of order cn is found such that:P;has the same monotonicity as f,everywhere except,perhaps,the small intervals(y;-π/n,y;+π/n)and‖f-P;‖<c(s)ω;(f,π/n),where N is a constant depending only on mini=1,...,2s {y;-y;},c,c(s) are constants depending only on s,ω;(f;,·) is the modulus of smoothness of the 3-rd order of the function f,and ||·|| is the max-norm.
引用
收藏
页码:74 / 92
页数:19
相关论文
共 3 条
[1]  
Comonotone approximation of periodic functions[J] . G. A. Dzyubenko,M. G. Pleshakov.Mathematical Notes . 2008 (1-2)
[2]   Comonotone Jackson's inequality [J].
Pleshakov, MG .
JOURNAL OF APPROXIMATION THEORY, 1999, 99 (02) :409-421
[3]   Nearly comonotone approximation [J].
Leviatan, D ;
Shevchuk, IA .
JOURNAL OF APPROXIMATION THEORY, 1998, 95 (01) :53-81