基于交替浸渍法对La0.65Sr0.35MnO3氧电极的性能优化

被引:0
|
作者
张旭
吴萍萍
丁利利
田彦婷
机构
[1] 太原理工大学物理与光电工程学院
关键词
储能; 可逆固体氧化物电池; La0.65Sr0.35MnO3(LSM)氧电极; 交替浸渍法; 复合氧电极;
D O I
10.13801/j.cnki.fhclxb.20211202.002
中图分类号
TQ133.3 [镧系元素(稀土元素)的无机化合物]; TM911.4 [燃料电池];
学科分类号
摘要
氢能以其高效、清洁、可再生的优点成为化石能源的有效替代者,而可逆固体氧化物电池(RSOC)既可利用氢气输出电能,也可电解H2O产生氢气,对其研究具有十分重要的意义。本文对RSOC的氧电极进行了研究,在La0.65Sr0.35MnO3(LSM)氧电极的基础上,采用溶液交替浸渍法将Sm0.2Ce0.8O1.9(SDC)和Sm0.5Sr0.5CoO3-δ(SSC)纳米粒子引入LSM氧电极中。800℃时,交替浸渍1次的LSM-SDC-SSC1氧电极的极化电阻为0.49Ω·cm2,是纯LSM电极(1.12Ω·cm2)的43%。SDC和SSC的浸渍顺序对电极形貌和性能的影响随着浸渍次数的增加逐渐减弱,交替浸渍2次的LSM-SDC-SSC2氧电极具有最低的极化过电位和极化电阻。800℃时,Ni-(Y2O3)0.08(ZrO2)0.92(YSZ)/YSZ/LSM-SDC-SSC2单电池在固体氧化物燃料电池(SOFC)模式下的最大功率密度为870 mW·cm-2,是纯LSM电池的6.3倍,在固体氧化物电解池(SOEC)模式下的最大电解电流密度为-1 150 mA·cm-2,具有良好的可逆电池输出性能。
引用
收藏
页码:5736 / 5746
页数:11
相关论文
共 38 条
  • [1] Nano-structured LSM-YSZ refined with PdO/ZrO2 oxygen electrode for intermediate temperature reversible solid oxide cells
    Tan, Yuan
    Gao, Shu
    Xiong, ChunYan
    Chi, Bo
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (38) : 19823 - 19830
  • [2] Materials for reversible solid oxide cells[J] . Mogens B. Mogensen.Current Opinion in Electrochemistry . 2020 (prep)
  • [3] Molten Salt Synthesis of High-Performance, Nanostructured La0.6Sr0.4FeO3?δ Oxygen Electrode of a Reversible Solid Oxide Cell[J] . Xiaodong Zuo,Zhiyi Chen,Chengzhi Guan,Kongfa Chen,Sanzhao Song,Guoping Xiao,Yuepeng Pang,Jian-Qiang Wang.Materials . 2020 (10)
  • [4] Highly active and durable La0.4Sr0.6MnO3-δ and Ce0.8Gd0.2O1.9 nanocomposite electrode for high-temperature reversible solid oxide electrochemical cells
    Shimada, Hiroyuki
    Fujimaki, Yoshinobu
    Fujishiro, Yoshinobu
    [J]. CERAMICS INTERNATIONAL, 2020, 46 (11) : 19617 - 19623
  • [5] High performance and stability of nanocomposite oxygen electrode for solid oxide cells
    Zhang, Yongliang
    Han, Minfang
    Sun, Zaihong
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (08) : 5554 - 5564
  • [6] Highly active and durable double-doped bismuth oxide-based oxygen electrodes for reversible solid oxide cells at reduced temperatures[J] . Byung-Hyun Yun,Kyeong Joon Kim,Dong Woo Joh,Munseok S. Chae,Jong Jun Lee,Dae-won Kim,Seokbeom Kang,Doyoung Choi,Seung-Tae Hong,Kang Taek Lee.Journal of Materials Chemistry A . 2019
  • [7] Further improvement in performances of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3?δ - doped ceria composite oxygen electrodes with infiltrated doped ceria nanoparticles for reversible solid oxide cells[J] . Manuel E. Brito,Hiroki Morishita,Junya Yamada,Hanako Nishino,Hiroyuki Uchida.Journal of Power Sources . 2019 (C)
  • [8] Electrochemical performance and stability of SrTi 0.3 Fe 0.6 Co 0.1 O 3-δ infiltrated La 0.8 Sr 0.2 MnO 3 <ce:glyph name="sbnd"/>Zr 0.92 Y 0.16 O 2-δ oxygen electrodes for intermediate-temperature solid oxide electrochem[J] . Shan-Lin Zhang,Hongqian Wang,Matthew Y. Lu,Cheng-Xin Li,Chang-Jiu Li,Scott A. Barnett.Journal of Power Sources . 2019
  • [9] Improved performance of a lanthanum strontium manganite–based oxygen electrode for an intermediate-temperature solid oxide electrolysis cell realized via ionic conduction enhancement[J] . Hai Jiao Men,Ning Tian,Yan Mei Qu,Min Wang,Shuang Zhao,Ji Yu.Ceramics International . 2019
  • [10] A high-performance SDC-infiltrated nanoporous silver cathode with superior thermal stability for low temperature solid oxide fuel cells
    Lee, Tsung-Han
    Fan, Liangdong
    Yu, Chen-Chiang
    Wiria, Florencia Edith
    Su, Pei-Chen
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (17) : 7357 - 7363