Spreading Speeds of Time-Dependent Partially Degenerate Reaction-Diffusion Systems

被引:0
作者
Jia LIU
机构
[1] SchoolofScience,Chang'anUniversity
关键词
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
This paper is concerned with the spreading speeds of time dependent partially degenerate reaction-diffusion systems with monostable nonlinearity. By using the principal Lyapunov exponent theory, the author first proves the existence, uniqueness and stability of spatially homogeneous entire positive solution for time dependent partially degenerate reaction-diffusion system. Then the author shows that such system has a finite spreading speed interval in any direction and there is a spreading speed for the partially degenerate system under certain conditions. The author also applies these results to a time dependent partially degenerate epidemic model.
引用
收藏
页码:79 / 94
页数:16
相关论文
共 50 条
[41]   Reaction-diffusion system approximation to degenerate parabolic systems [J].
Murakawa, H. .
NONLINEARITY, 2007, 20 (10) :2319-2332
[42]   SPREADING SPEEDS FOR A REACTION-DIFFUSION HIV/AIDS EPIDEMIC MODEL WITH EDUCATION CAMPAIGNS [J].
Shi, Wanxia .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (05) :1762-1778
[43]   BLOWUP AND LIFE SPAN BOUNDS FOR A REACTION-DIFFUSION EQUATION WITH A TIME-DEPENDENT GENERATOR [J].
Kolkovska, Ekaterina T. ;
Alfredo Lopez-Mimbela, Jose ;
Perez, Aroldo .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,
[44]   Maximum norm a posteriori error estimation for a time-dependent reaction-diffusion problem [J].
Kopteva, Natalia ;
Linß, Torsten .
Computational Methods in Applied Mathematics, 2012, 12 (02) :189-205
[45]   REACTION-DIFFUSION PROBLEMS ON TIME-DEPENDENT RIEMANNIAN MANIFOLDS: STABILITY OF PERIODIC SOLUTIONS [J].
Bandle, C. ;
Monticelli, D. D. ;
Punzo, F. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (06) :6082-6099
[46]   Spreading fronts in a partially degenerate integro-differential reaction–diffusion system [J].
Wan-Tong Li ;
Meng Zhao ;
Jie Wang .
Zeitschrift für angewandte Mathematik und Physik, 2017, 68
[47]   Generalized traveling waves for time-dependent reaction–diffusion systems [J].
Benjamin Ambrosio ;
Arnaud Ducrot ;
Shigui Ruan .
Mathematische Annalen, 2021, 381 :1-27
[48]   Dynamics of diseases spreading on networks in the forms of reaction-diffusion systems [J].
Sun, Gui-Quan ;
He, Runzi ;
Hou, Li-Feng ;
Gao, Shupeng ;
Luo, Xiaofeng ;
Liu, Quanhui ;
Zhang, Yicheng ;
Chang, Lili .
EPL, 2024, 147 (01)
[49]   A balanced norm error estimation for the time-dependent reaction-diffusion problem with shift in space [J].
Brdar, Mirjana ;
Franz, Sebastian ;
Ludwig, Lars ;
Roos, Hans-Goerg .
APPLIED MATHEMATICS AND COMPUTATION, 2023, 437
[50]   Pointwise error estimates for a singularly perturbed time-dependent semilinear reaction-diffusion problem [J].
Kopteva, Natalia ;
Savescu, Simona Blanca .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (02) :616-639