CraftingofplasmonicAunanoparticlescoupledultrathinBiOBrnanosheetsheterostructure:steeringchargetransferforefficientCO2photoreduction

被引:0
作者
Gaopeng Liu [1 ]
Lin Wang [1 ]
Xin Chen [1 ]
Xingwang Zhu [1 ]
Bin Wang [1 ]
Xinyuan Xu [1 ]
Ziran Chen [2 ]
Wenshuai Zhu [1 ]
Huaming Li [1 ]
Jiexiang Xia [1 ]
机构
[1] School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University
[2] Department of Architecture and Environment Engineering, Sichuan Vocational and Technical College
关键词
D O I
暂无
中图分类号
O643.36 [催化剂]; O644.1 [光化学]; X701 [废气的处理与利用];
学科分类号
081705 ; 070304 ; 081704 ; 083002 ;
摘要
Integrating semiconductor photocatalysts with outstanding visible light absorption and fast surface/interface charge transfer kinetics is still an enormous challenge for efficient CO2 photoreduction. In this work, the Au nanoparticles have been coupled with ultrathin BiOBr nanosheets, the formed heterostructure(Au/BiOBr) possesses a localized surface plasmon resonance(LSPR) and enhances the visible light absorption ability, as well as forms a fast charge transport channel on the interface between Au and BiOBr. Thus, the heterostructure photocatalyst exhibits higher photocatalytic CO2 to CO performance(135.3/16.43 μmol g-1) than that of BiOBr(89.0/6.46 μmol g-1) under 300 W Xe lamp and visible light(λ > 400 nm) irradiation for 5 h, respectively. Finally, the in situ FT-IR spectroscopy revealed CO2 photoreduction process and found that the *COOH is the key intermediate for CO2 to CO. This work provides an effective method to construct multielectron transfer scheme for efficient photocatalytic CO2 reduction.
引用
收藏
页码:157 / 164
页数:8
相关论文
共 50 条
[41]   Metal doped TiO2 photocatalysts for CO2 photoreduction [J].
Al-Ahmed, A. (aalahmed@kfupm.edu.sa), 1600, Trans Tech Publications Ltd (757) :243-256
[42]   Metal-organic frameworks for CO2 photoreduction [J].
Zhang, Lei ;
Zhang, Junqing .
FRONTIERS IN ENERGY, 2019, 13 (02) :221-250
[43]   REDOX CHEMISTRY OF MOLYBDENA SILICA CATALYSTS .2. PHOTOREDUCTION [J].
SEYEDMONIR, SR ;
HOWE, RF .
JOURNAL OF CATALYSIS, 1988, 110 (02) :229-242
[44]   Metal-organic frameworks for CO2 photoreduction [J].
Lei Zhang ;
Junqing Zhang .
Frontiers in Energy, 2019, 13 :221-250
[45]   PHOTOREDUCTION OF 2 3 AND 4-BENZOYLPYRIDINE IN ISOPROPYL ALCOHOL [J].
NELSON, DA ;
NORTON, GD ;
STANLEY, WH .
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1969, (APR) :O146-&
[46]   Photoreduction of chromium(VI) on ZrO2 and ZnS surfaces [J].
Chockalingam Karunakaran ;
M. Panneerselvam Sujatha ;
Paramasivan Gomathisankar .
Monatshefte für Chemie - Chemical Monthly, 2009, 140 :1269-1274
[47]   Bismuth-based materials for CO2 photoreduction [J].
Zhang, Yi ;
Zhang, Guangpu ;
Di, Jun ;
Xia, Jiexiang .
CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2023, 39
[48]   THE PHOTOREDUCTION OF ACRIDINE IN DEAERATED AND AERATED ALCOHOL SOLUTIONS .2. [J].
NIIZUMA, S ;
KOIZUMI, M .
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1963, 36 (12) :1629-1636
[49]   Insights into the role of CuO in the CO2 photoreduction process [J].
Nogueira, Andre E. ;
Oliveira, Jessica A. ;
da Silva, Gelson T. S. T. ;
Ribeiro, Caue .
SCIENTIFIC REPORTS, 2019, 9 (1)
[50]   Comparison of photooxidation and photoreduction reactions on TiO2 nanoparticles [J].
Egerton, Terry A. ;
Mattinson, John A. .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2007, 186 (2-3) :115-120