SHADOWING,EXPANSIVENESS AND SPECIFICATION FOR C~1-CONSERVATIVE SYSTEMS

被引:0
作者
Mario BESSA [1 ]
Manseob LEE [2 ]
文晓 [3 ]
机构
[1] Universidade da Beira Interior,Rua Marques d'Avila e Bolama
[2] Department of Mathematics,Mokwon University
[3] The School of Mathematics and Systems Science,Beihang University
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Shadowing; expansiveness; specification; generic; Anosov; volume-preserving; star systems;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
We prove that a C~1-generic volume-preserving dynamical system(diffeomorphism or flow) has the shadowing property or is expansive or has the weak specification property if and only if it is Anosov.Finally,as in[10,27],we prove that the C~1-robustness,within the volume-preserving context,of the expansiveness property and the weak specification property,imply that the dynamical system(diffeomorphism or flow) is Anosov.
引用
收藏
页码:583 / 600
页数:18
相关论文
共 25 条
  • [1] DIFFEOMORPHISMS WITH VARIOUS C~1 STABLE PROPERTIES[J]. 田学廷,孙文祥.Acta Mathematica Scientia. 2012(02)
  • [2] Symbolic extensions and dominated splittings for generic C^{1} C 1 -diffeomorphisms[J] . A. Arbieto,A. Armijo,T. Catalan,L. Senos.Mathematische Zeitschrift . 2013 (3-4)
  • [3] Shades of hyperbolicity for Hamiltonians
    Bessa, Mario
    Rocha, Jorge
    Torres, Maria Joana
    [J]. NONLINEARITY, 2013, 26 (10) : 2851 - 2873
  • [4] Hyperbolicity in the volume-preserving scenario[J] . ALEXANDER ARBIETO,THIAGO CATALAN.Ergodic Theory and Dynamical Systems . 2012 (6)
  • [5] The specification property for flows from the robust and generic viewpoint
    Arbieto, Alexander
    Senos, Laura
    Sodero, Tatiana
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (06) : 1893 - 1909
  • [6] Generic Bowen-expansive flows[J] . Laura Senos.Bulletin of the Brazilian Mathematical Society, New Series . 2012 (1)
  • [7] A C <SUP>1</SUP> generic condition for existence of symbolic extensions of volume preserving diffeomorphisms[J] . Thiago Catalan.Nonlinearity . 2012 (12)
  • [8] Stability properties of divergence-free vector fields
    Ferreira, Celia
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2012, 27 (02): : 223 - 238
  • [9] Abundance of $C^{1}$-robust homoclinic tangencies[J] . Christian Bonatti,Lorenzo J. Díaz.Transactions of the American Mathematical Society . 2012 (10)
  • [10] Homoclinic classes with shadowing[J] . Jiweon Ahn,Keonhee Lee,Manseob Lee.Journal of Inequalities and Applications . 2012 (1)