Two-dimensional electron gas characteristics of InP-based high electron mobility transistor terahertz detector

被引:0
作者
李金伦 [1 ,2 ]
崔少辉 [1 ]
徐建星 [2 ,3 ]
崔晓然 [2 ,4 ]
郭春妍 [2 ,5 ]
马奔 [2 ,6 ]
倪海桥 [2 ,6 ]
牛智川 [2 ,6 ]
机构
[1] Department of Missile Engineering,Shijiazhuang Campus,Army Engineering University
[2] State Key Laboratory for Superlattices,Institute of Semiconductors,Chinese Academy of Sciences(CAS)
[3] Microsystem & Terahertz Research Center,China Academy of Engineering Physics
[4] Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory,Xidian University
[5] Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology of Chinese Academy of Sciences,Xi'an Institute of Optics and Precision Mechanics
[6] College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
THz detector; high electron mobility transistor; two-dimensional electron gas; InP;
D O I
暂无
中图分类号
TN386 [场效应器件];
学科分类号
0805 ; 080501 ; 080502 ; 080903 ;
摘要
The samples of In;Ga;As/In;Al;As two-dimensional electron gas(2DEG)are grown by molecular beam epitaxy(MBE).In the sample preparation process,the In content and spacer layer thickness are changed and two kinds of methods,i.e.,contrast body doping andδ-doping are used.The samples are analyzed by the Hall measurements at 300 Kand 77 K.The In;Ga;As/In;Al;As 2DEG channel structures with mobilities as high as 10289 cm;/V·s(300 K)and42040 cm;/V·s(77 K)are obtained,and the values of carrier concentration(Nc)are 3.465×10;/cm;and 2.502×10;/cm;,respectively.The THz response rates of In P-based high electron mobility transistor(HEMT)structures with different gate lengths at 300 K and 77 K temperatures are calculated based on the shallow water wave instability theory.The results provide a reference for the research and preparation of In P-based HEMT THz detectors.
引用
收藏
页码:367 / 372
页数:6
相关论文
共 24 条
  • [1] Dyakonov,M,Shur,M. Physics Review Letters . 1993
  • [2] Koo B H,Hanada T,Makino H,Chang J H,Yao T. Journal of Crystal Growth . 2001
  • [3] Duque C A,Akimov V,Demediuk R,Belykh V,Tiutiunnyk A,Morales A L,Restrepo R L,Nalivayko O,Fomina O,Mora-Ramos M E,Tulupenko V. Superlattices and Microstructures . 2015
  • [4] Guo N,Hu W D,Chen X S,Wang L,Lu W. Optics Express . 2013
  • [5] Xu J X,Li J L,Wei S H,Ma B,Zhang Y,Zhang Y,Ni H Q,Niu Z C. Chin.Phys.B . 2017
  • [6] Qin H,Huang Y D,Sun J D,Zhang Z P,Yu Y,Li X,Sun Y F. Chin.Opt . 2017
  • [7] Victor R,Irina K,Maxim R,Akira S. International Journal of High Speed Electronics and Systems . 2007
  • [8] Liu H R,Yu J S,Peter H,Byron A. Int.J.Anten.Propag . 2013
  • [9] Wang H P,Wang G L,Ni H Q,Xu Y Q,Niu Z C,Gao F Q. Acta Physica Sinica . 2013
  • [10] Taiichi O. Progress In Electromagnetics Research Symposium Proceedings . 2011