Solutions for the Prescribing Mean Curvature Equation

被引:2
|
作者
Dao-min Cao~1 Shuang-jie Peng~2 1 Academy of Mathematics and Systems Science
机构
基金
中国国家自然科学基金;
关键词
Mean curvature; critical point; concentrating solutions;
D O I
暂无
中图分类号
O175.2 [偏微分方程];
学科分类号
摘要
By variational methods,for a kind of Yamabe problem whose scalar curvature vanishes in the unit ball B~N and on the boundary Sthe mean curvature is prescribed,we construct multi-peak solutions whose maxima are located on the boundary as the parameter tends to 0~+ under certain assumptions.We also obtain the asymptotic behaviors of the solutions.
引用
收藏
页码:497 / 510
页数:14
相关论文
共 50 条
  • [1] Solutions for the prescribing mean curvature equation
    Dao-min Cao
    Shuang-jie Peng
    Acta Mathematicae Applicatae Sinica, English Series, 2008, 24 : 497 - 510
  • [2] Solutions for the prescribing mean curvature equation
    Cao, Dao-min
    Peng, Shuang-jie
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2008, 24 (03): : 497 - 510
  • [3] MULTIPLE SOLUTIONS FOR THE MEAN CURVATURE EQUATION
    Lorca, Sebastian
    Montenegro, Marcelo
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2010, 35 (01) : 61 - 68
  • [4] Solutions of the mean curvature equation with the Nehari manifold
    J. Vanterler da C. Sousa
    D. S. Oliveira
    Leandro S. Tavares
    Computational and Applied Mathematics, 2024, 43
  • [5] ON CUSP SOLUTIONS TO A PRESCRIBED MEAN CURVATURE EQUATION
    Echart, Alexandra K.
    Lancaster, Kirk E.
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 288 (01) : 47 - 54
  • [6] GENERALIZED SOLUTIONS FOR THE MEAN-CURVATURE EQUATION
    GIUSTI, E
    PACIFIC JOURNAL OF MATHEMATICS, 1980, 88 (02) : 297 - 321
  • [7] Solutions of the mean curvature equation with the Nehari manifold
    Sousa, J. Vanterler da C.
    Oliveira, D. S.
    Tavares, Leandro S.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01):
  • [8] A comparison result for radial solutions of the mean curvature equation
    Lopez, Rafael
    APPLIED MATHEMATICS LETTERS, 2009, 22 (06) : 860 - 864
  • [9] Solutions to the mean curvature equation by fixed point methods
    Mariani, MC
    Rial, DF
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 1997, 4 (05) : 617 - 620
  • [10] Existence and nonexistence of solutions for the mean curvature equation with weights
    Filippucci, Roberta
    Zheng, Yadong
    MATHEMATISCHE ANNALEN, 2024, 390 (04) : 5821 - 5861