Atomic Decompositions of Triebel-Lizorkin Spaces with Local Weights and Applications

被引:0
作者
Liguang LIU [1 ]
Dachun YANG [2 ]
机构
[1] Department of Mathematics,School of Information,Renmin University of China
[2] School of Mathematical Sciences,Beijing Normal University,Laboratory of Mathematics and Complex Systems,Ministry of Education
关键词
Local weight; Triebel-Lizorkin space; Atom; Lusin-Area function; Riesz transform;
D O I
暂无
中图分类号
O172.2 [积分学];
学科分类号
0701 ; 070101 ;
摘要
In this paper,the authors characterize the inhomogeneous Triebel-Lizorkin spaces Fp,q s,w(Rn)with local weight w by using the Lusin-area functions for the full ranges of the indices,and then establish their atomic decompositions for s ∈ R,p ∈(0,1] and q ∈ [p,∞).The novelty is that the weight w here satisfies the classical Muckenhoupt condition only on balls with their radii in(0,1].Finite atomic decompositions for smooth functions in Fp,q s,w(Rn)are also obtained,which further implies that a(sub)linear operator that maps smooth atoms of Fp,q s,w(Rn)uniformly into a bounded set of a(quasi-)Banach space is extended to a bounded operator on the whole Fp,q s,w(Rn).As an application,the boundedness of the local Riesz operator on the space Fp,q s,w(Rn)is obtained.
引用
收藏
页码:237 / 260
页数:24
相关论文
共 10 条
[1]  
Hypersingular parameterized Marcinkiewicz integrals with variable kernels on Sobolev and Hardy-Sobolev spaces[J]. CHEN Jie-cheng YU Xiao ZHANG Yan-dan WANG Hui Department of Mathematics,Zhejiang University,Hangzhou 310027,China. Applied Mathematics:A Journal of Chinese Universities(Series B). 2008(04)
[2]  
Atomic decomposition for weighted Besov and Triebel‐Lizorkin spaces[J] . MitsuoIzuki,YoshihiroSawano. Math. Nachr. . 2011 (1)
[3]  
Weighted norm inequalities for pseudo-differential operators with smooth symbols and their commutators[J] . Lin Tang. Journal of Functional Analysis . 2011 (4)
[4]   Spectral theory of some degenerate elliptic operators with local singularities [J].
Haroske, Dorothee D. ;
Skrzypczak, Leszek .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) :282-299
[5]  
Boundedness of an oscillating multiplier on Triebel-Lizorkin spaces[J] . Wei Cao,Jie Cheng Chen,Da Shan Fan. Acta Mathematica Sinica, English Series . 2010 (11)
[6]  
Wavelet bases in the weighted Besov and Triebel–Lizorkin spaces with A p loc -weights[J] . Mitsuo Izuki,Yoshihiro Sawano. Journal of Approximation Theory . 2009 (2)
[7]   A Boundedness Criterion via Atoms for Linear Operators in Hardy Spaces [J].
Yang, Dachun ;
Zhou, Yuan .
CONSTRUCTIVE APPROXIMATION, 2009, 29 (02) :207-218
[8]  
Atomic decompositions of function spaces with Muckenhoupt weights, and some relation to fractal analysis[J] . Dorothee D.Haroske,IwonaPiotrowska. Math. Nachr. . 2008 (10)
[9]  
Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms[J] . Dachun Yang,Yuan Zhou. Journal of Mathematical Analysis and Applications . 2007 (1)
[10]  
Function Spaces with Exponential Weights I[J] . ThomasSchott. Math. Nachr. . 2006 (1)