Traces of weighted function spaces: Dyadic norms and Whitney extensions

被引:0
作者
KOSKELA Pekka [1 ]
SOTO Tomas [1 ]
WANG Zhuang [1 ]
机构
[1] Department of Mathematics and Statistics, University of Jyvskyl
基金
芬兰科学院;
关键词
trace theorems; weighted Sobolev spaces; Besov spaces; Triebel-Lizorkin spaces;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
The trace spaces of Sobolev spaces and related fractional smoothness spaces have been an active area of research since the work of Nikolskii, Aronszajn, Slobodetskii, Babich and Gagliardo among others in the 1950’s. In this paper, we review the literature concerning such results for a variety of weighted smoothness spaces. For this purpose, we present a characterization of the trace spaces(of fractional order of smoothness),based on integral averages on dyadic cubes, which is well-adapted to extending functions using the Whitney extension operator.
引用
收藏
页码:1981 / 2010
页数:30
相关论文
共 12 条
  • [1] Traces of weighted Sobolev spaces with Muckenhoupt weight. The case p = 1[J] . A.I. Tyulenev.Nonlinear Analysis . 2015
  • [2] Some new function spaces of variable smoothness
    Tyulenev, A. I.
    [J]. SBORNIK MATHEMATICS, 2015, 206 (06) : 849 - 891
  • [3] Traces of weighted Sobolev spaces. Old and new[J] . Petru Mironescu,Emmanuel Russ.Nonlinear Analysis . 2015
  • [4] Description of traces of functions in the Sobolev space with a Muckenhoupt weight
    Tyulenev, A. I.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 284 (01) : 280 - 295
  • [5] WEIGHTED LOCAL ORLICZ-HARDY SPACES ON DOMAINS AND THEIR APPLICATIONS IN INHOMOGENEOUS DIRICHLET AND NEUMANN PROBLEMS
    Cao, Jun
    Chang, Der-Chen
    Yang, Dachun
    Yang, Sibei
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (09) : 4729 - 4809
  • [6] Characterization of traces of smooth functions on Ahlfors regular sets
    Ihnatsyeva, Lizaveta
    Vaehaekangas, Antti V.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (09) : 1870 - 1915
  • [7] Characterizations of Besov and Triebel–Lizorkin spaceson metric measure spaces[J] . Amiran Gogatishvili,Pekka Koskela,Yuan Zhou.Forum Mathematicum . 2013 (4)
  • [8] Interpolation properties of Besov spaces defined on metric spaces
    Gogatishvili, Amiran
    Koskela, Pekka
    Shanmugalingam, Nageswari
    [J]. MATHEMATISCHE NACHRICHTEN, 2010, 283 (02) : 215 - 231
  • [9] Besov spaces on closed sets by means of atomic decomposition
    Jonsson, Alf
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (06) : 585 - 611
  • [10] A Theory of Besov and Triebel-Lizorkin Spaces on Metric Measure Spaces Modeled on Carnot-Carathéodory Spaces[J] . Yongsheng Han,Detlef Müller,Dachun Yang,Stephen Clark.Abstract and Applied Analysis . 2009