3-PERIODIC ORBIT IMPLYING 683172687698650885-PERIODIC ORBITS——INFIMUMS OF NUMBERS OF PERIODIC ORBITS IN CONTINUOUS FUNCTIONS

被引:0
|
作者
麦结华
机构
[1] Department of Mathematics
[2] Nanning 530004
[3] Guangxi University
[4] PRC
基金
中国国家自然科学基金;
关键词
continuous function; periodic orbit; Sarkovskii’s theorem; unimodal orbit;
D O I
暂无
中图分类号
学科分类号
摘要
For any continuous function f on the interval I=[0, 1] and any m, n≥1, let N(n, f)denote the number of n-periodic orbits in f. Put N(n, m)=min{N(n, f):f is a continuousfunction on I, and N(m, f)≥1}. The famous Sarkovskii’s theorem can be stated as follows:If n?m, then N(n,m)≥1. In this paper, we further obtain analytic expressions of the precisevalue of N(n, m) for all positive integers m and n, which are convenient for computing.
引用
收藏
页码:1194 / 1204
页数:11
相关论文
共 23 条
  • [1] 3-PERIODIC ORBIT IMPLYING 6831726876986508 85-PERIODIC ORBITS - INFIMUMS OF NUMBERS OF PERIODIC-ORBITS IN CONTINUOUS-FUNCTIONS
    MAI, JH
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL SCIENCES, 1991, 34 (10): : 1194 - 1204
  • [2] PERIODIC ORBITS FOR MULTIVALUED MAPS WITH CONTINUOUS MARGINS OF INTERVALS
    Mai, Jiehua
    Sun, Taixiang
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 48 (02) : 453 - 464
  • [3] On the limit values of Mel’nikov functions on periodic orbits
    S. D. Glyzin
    A. Yu. Kolesov
    N. Kh. Rozov
    Differential Equations, 2007, 43 : 180 - 195
  • [4] On the limit values of Mel'nikov functions on periodic orbits
    Glyzin, S. D.
    Kolesov, A. Yu.
    Rozov, N. Kh.
    DIFFERENTIAL EQUATIONS, 2007, 43 (02) : 180 - 195
  • [5] ON EQUILIBRIA AND PERIODIC ORBITS OF COOPERATIVE SYSTEMS IN R~3
    Xiao Jian Sheng Liren (Dept. of Math.
    Annals of Differential Equations, 2005, (01) : 52 - 58
  • [6] The Nielsen numbers of iterations of maps on infra-solvmanifolds of type (R) and periodic orbits
    Fel'shtyn, Alexander
    Lee, Jong Bum
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (02)
  • [7] The beta-transformation's companion map for Pisot or Salem numbers and their periodic orbits
    Maia, Bruno Melo
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2018, 33 (01): : 1 - 9
  • [8] Stability of Periodic Orbits and Return Trajectories of Continuous Multi-valued Maps on Intervals
    Tai Xiang Sun
    Fan Ping Zeng
    Guang Wang Su
    Bin Qin
    Acta Mathematica Sinica, English Series, 2018, 34 : 1121 - 1130
  • [9] Stability of Periodic Orbits and Return Trajectories of Continuous Multi-valued Maps on Intervals
    Sun, Tai Xiang
    Zeng, Fan Ping
    Su, Guang Wang
    Qin, Bin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (07) : 1121 - 1130
  • [10] Stability of Periodic Orbits and Return Trajectories of Continuous Multi-valued Maps on Intervals
    Tai Xiang SUN
    Fan Ping ZENG
    Guang Wang SU
    Bin QIN
    Acta Mathematica Sinica,English Series, 2018, (07) : 1121 - 1130