AVERAGE REGULARITY OF THE SOLUTION TO AN EQUATION WITH THE RELATIVISTIC-FREE TRANSPORT OPERATOR

被引:0
作者
黄健骏 [1 ]
姜正禄 [1 ]
机构
[1] Department of Mathematics, Sun Yat-Sen University
关键词
regularity; transport operator; relativistic Boltzmann equation;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
Let u = u(t, x, p) satisfy the transport equation ?u/?t+p/p0 ?u/?x= f, where f =f(t, x, p) belongs to L~p((0, T) × R~3× R~3) for 1 < p < ∞ and ?/?t+p/p0 ?/?x is the relativisticfree transport operator from the relativistic Boltzmann equation. We show the regularity of ∫u(t, x, p)d p using the same method as given by Golse, Lions, Perthame and Sentis. This average regularity is considered in terms of fractional Sobolev spaces and it is very useful for the study of the existence of the solution to the Cauchy problem on the relativistic Boltzmann equation.
引用
收藏
页码:1281 / 1294
页数:14
相关论文
共 15 条
[1]  
ON THE RELATIVISTIC BOLTZMANN EQUATION[J]. 姜正禄.Acta Mathematica Scientia. 1998(03)
[2]   周期单元中相对论Boltzmann方程初值问题整体解的存在性 [J].
姜正禄 .
数学学报, 1998, (02) :151-160
[3]   与相对论Boltzmann方程中的输运算子有关的紧性 [J].
姜正禄 .
数学物理学报, 1997, (03) :330-335
[4]  
Derivation of relativistic hydrodynamic equations consistent with relativistic Boltzmann equation by renormalization-group method[J] . Kyosuke Tsumura,Teiji Kunihiro.The European Physical Journal A . 2012 (11)
[5]   Asymptotic Stability of the Relativistic Boltzmann Equation for the Soft Potentials [J].
Strain, Robert M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 300 (02) :529-597
[6]  
General relativistic Boltzmann equation, II: Manifestly covariant treatment[J] . F. Debbasch,W.A. van Leeuwen.Physica A: Statistical Mechanics and its Applications . 2009 (9)
[7]  
General relativistic Boltzmann equation, I: Covariant treatment[J] . F. Debbasch,W.A. van Leeuwen.Physica A: Statistical Mechanics and its Applications . 2009 (7)
[8]   Global existence proof for relativistic Boltzmann equation with hard interactions [J].
Jiang, Zhenglu .
JOURNAL OF STATISTICAL PHYSICS, 2008, 130 (03) :535-544
[9]  
Global Solutions to the Cauchy Problem for the Relativistic Boltzmann Equation with Near–Vacuum Data[J] . Robert T. Glassey.Communications in Mathematical Physics . 2006 (3)
[10]  
Averaging lemmas without time Fourier transform and application to discretized kinetic equations[J] . F. Bouchut,L. Desvillettes.Proceedings of the Royal Society of Edinburgh: Se . 1999 (1)