FePO4-coated Li[Li0.2Ni0.13Co0.13Mn0.54]O2 with improved cycling performance as cathode material for Li-ion batteries

被引:2
作者
Zhong Wang [1 ,2 ]
Hua-Quan Lu [1 ,2 ]
Yan-Ping Yin [1 ,2 ]
Xue-Yi Sun [1 ,2 ]
Xiang-Tao Bai [1 ,2 ]
Xue-Ling Shen [1 ,2 ]
Wei-Dong Zhuang [1 ,2 ]
Shi-Gang Lu [1 ,2 ]
机构
[1] R&D Center for Vehicle and Energy Storage, General Research Institute of Nonferrous Metals
[2] China Automotive Battery Research Institue Co.Ltd
基金
国家高技术研究发展计划(863计划);
关键词
Lithium-ion battery; Cathode material; Coating; Lithium-rich; Iron phosphate;
D O I
暂无
中图分类号
TM912 [蓄电池]; TQ131.11 [];
学科分类号
0808 ; 0817 ;
摘要
Li[LiNiCoMn]Ocathode materials were synthesized by carbonate-based co-precipitation method, and then, its surface was coated by thin layers of FePO. The prepared samples were characterized by X-ray diffraction(XRD), field emission scanning electron microscope(FESEM), energy-dispersive spectroscopy(EDS), and transmission electron microscopy(TEM). The XRD and TEM results suggest that both the pristine and the coated materials have a hexagonal layered structure, and the FePOcoating layer does not make any major change in the crystal structure. The FePO-coated sample exhibits both improved initial discharge capacity and columbic efficiency compared to the pristine one. More significantly, the FePOcoating layer has a much positive influence on the cycling performance. The FePO-coated sample exhibits capacity retention of 82 % after 100 cycles at 0.5 ℃ between 2.0 and 4.8 V, while only 28 % for the pristine one at the same charge-discharge condition. The electrochemical impedance spectroscopy(EIS) results indicate that this improved cycling performance could be ascribed to the presence of FePOon the surface of Li[LiNiCoMn]Oparticle, which helps to protect the cathode from chemical attacks by HF and thus suppresses the large increase in charge transfer resistance.
引用
收藏
页码:899 / 904
页数:6
相关论文
共 50 条
  • [21] Improved electrochemical properties of YF3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode for Li-ion batteries
    Bailong Liu
    Zhaohui Zhang
    Jiangkai Wan
    Shifeng Liu
    Ionics, 2017, 23 : 1365 - 1374
  • [22] Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 hollow spherical as cathode material for Li-ion battery
    Yu Zhang
    Tianjiao Zhu
    Liu Lin
    Mengwei Yuan
    Huifeng Li
    Genban Sun
    Shulan Ma
    Journal of Nanoparticle Research, 2017, 19
  • [23] Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 hollow spherical as cathode material for Li-ion battery
    Zhang, Yu
    Zhu, Tianjiao
    Lin, Liu
    Yuan, Mengwei
    Li, Huifeng
    Sun, Genban
    Ma, Shulan
    JOURNAL OF NANOPARTICLE RESEARCH, 2017, 19 (11)
  • [24] Synthesis, characterization and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries
    Jin, Xue
    Xu, Qunjie
    Yuan, Xiaolei
    Zhou, Luozeng
    Xia, Yongyao
    ELECTROCHIMICA ACTA, 2013, 114 : 605 - 610
  • [25] Combustion synthesis and electrochemical performance of Li [Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability
    Shi, S. J.
    Tu, J. P.
    Tang, Y. Y.
    Yu, Y. X.
    Zhang, Y. Q.
    Wang, X. L.
    Gu, C. D.
    JOURNAL OF POWER SOURCES, 2013, 228 : 14 - 23
  • [26] LiFePO4-Coated Li1.2Mn0.54Ni0.13CO0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries
    He Lei
    Xu Jun-Min
    Wang Yong-Jian
    Zhang Chang-Jin
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (08) : 1605 - 1613
  • [27] Synthesis of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathode Material in Acetate System for Lithium-Ion Battery
    Shao, Zhongcai
    Yv, Lina
    Hu, Jinbo
    Zhao, Yongxin
    Dai, Shihang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (03): : 2996 - 3005
  • [28] Surface-modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 nanoparticles with LaF3 as cathode for Li-ion battery
    Cheng-Dong Li
    Zhi-Lei Yao
    Jin Xu
    Pei Tang
    Xin Xiong
    Ionics, 2017, 23 : 549 - 558
  • [29] Surface-modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 nanoparticles with LaF3 as cathode for Li-ion battery
    Li, Cheng-Dong
    Yao, Zhi-Lei
    Xu, Jin
    Tang, Pei
    Xiong, Xin
    IONICS, 2017, 23 (03) : 549 - 558
  • [30] Understanding the enhanced electrochemical performance of samarium substituted Li[Li0.2Mn0.54-xSmxCo0.13Ni0.13]O2 cathode material for lithium ion batteries
    Xu, Guofeng
    Xue, Qingrui
    Li, Jianling
    Li, Zhanyu
    Li, Xinping
    Yu, Tianheng
    Li, Jiguang
    Wang, Xindong
    Kang, Feiyu
    SOLID STATE IONICS, 2016, 293 : 7 - 12