结合局部稀疏性和非局部相似性的盲压缩感知方法

被引:5
作者
封磊
孙怀江
机构
[1] 南京理工大学计算机科学与工程学院
关键词
盲压缩感知; 稀疏表示; 字典学习; 非局部相似性; 交替方向乘子法;
D O I
10.14177/j.cnki.32-1397n.2017.41.04.001
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
为了降低传统的盲压缩感知图像重建方法所需求的采样率,提出了一种新的盲压缩感知图像重建方法,该方法同时考虑局部图像块的稀疏性和非局部图像块间的相似性,另外选择交替方向乘子算法求解产生的非凸优化问题,实现了图像的准确重建。实验结果表明,在不损失图像重构质量的情况下,该方法能够显著地降低采样率。
引用
收藏
页码:399 / 404
页数:6
相关论文
共 19 条
[1]  
K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. Aharon, Michal,Elad, Michael,Bruckstein, Alfred. IEEE Transactions on Signal Processing . 2006
[2]  
Image compressive sensing recovery using adaptively learned sparsifying basis via L0 minimization[J] . Jian Zhang,Chen Zhao,Debin Zhao,Wen Gao. &nbspSignal Processing . 2013
[3]   Medical imaging [P]. 
英国专利 :GB201304728D0 ,2013-05-01
[4]  
Dictionary Learning from Sparsely Corrupted or CompressedSignals. Studer C,Baraniuk R G. IEEE International Conference on Acoustics, Speech and Signal Processing . 2012
[5]  
Non-local sparse models for image restoration. Mairal J,Bach F,Ponce J,et al. Computer Vision . 2009
[6]  
Group-based sparse representation for image restoration. J Zhang,D Zhao,W Gao. IEEETransactions on image processing . 2014
[7]  
Image compressive sensing via truncated schatten-p norm regularization. Feng L,Sun H,Sun Q,et al. Signal Processing . 2016
[8]   LFM宽带雷达信号的多通道盲压缩感知模型研究 [J].
方标 ;
黄高明 ;
高俊 .
自动化学报, 2015, 41 (03) :591-600
[9]  
Compressed Sensing Recovery viaCollaborative Sparsity. J. Zhang,D. B. Zhao,C. Zhao,R. Q. Xiong. Proceedings of IEEE Data Compression Conference (DCC) . 2012
[10]  
Exploiting Structure in Wavelet-Based Bayesian Compressive Sensing. Lihan He,Carin, L. Signal Processing . 2009