Deformed soliton,breather,and rogue wave solutions of an inhomogeneous nonlinear Schrdinger equation

被引:0
|
作者
陶勇胜 [1 ]
贺劲松 [1 ]
K. Porsezian [2 ]
机构
[1] Department of Mathematics,Ningbo University
[2] Department of Physics,Pondicherry University
基金
中国国家自然科学基金;
关键词
inhomogeneous nonlinear Schrdinger equation; Lax pair; Darboux transformation; soliton;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
We use the 1-fold Darboux transformation (DT) of an inhomogeneous nonlinear Schro¨dinger equation (INLSE) to construct the deformed-soliton, breather, and rogue wave solutions explicitly. Furthermore, the obtained first-order deformed rogue wave solution, which is derived from the deformed breather solution through the Taylor expansion, is different from the known rogue wave solution of the nonlinear Schro¨dinger equation (NLSE). The effect of inhomogeneity is fully reflected in the variable height of the deformed soliton and the curved background of the deformed breather and rogue wave. By suitably adjusting the physical parameter, we show that a desired shape of the rogue wave can be generated. In particular, the newly constructed rogue wave can be reduced to the corresponding rogue wave of the nonlinear Schro¨dinger equation under a suitable parametric condition.
引用
收藏
页码:241 / 245
页数:5
相关论文
共 50 条
  • [21] The breather and semi-rational rogue wave solutions for the coupled mixed derivative nonlinear Schrödinger equations
    Jie Jin
    Yi Zhang
    Rusuo Ye
    Lifei Wu
    Nonlinear Dynamics, 2023, 111 : 633 - 643
  • [22] Darboux transformation of a new generalized nonlinear Schrodinger equation: soliton solutions, breather solutions, and rogue wave solutions
    Tang, Yaning
    He, Chunhua
    Zhou, Meiling
    NONLINEAR DYNAMICS, 2018, 92 (04) : 2023 - 2036
  • [23] Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrodinger Equation
    Zhang, Hai-Qiang
    Liu, Xiao-Li
    Wen, Li-Li
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (02): : 95 - 101
  • [24] Breather and rogue wave solutions of a generalized nonlinear Schrodinger equation
    Wang, L. H.
    Porsezian, K.
    He, J. S.
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [25] Kuznetsov–Ma rogue wave clusters of the nonlinear Schrödinger equation
    Sarah Alwashahi
    Najdan B. Aleksić
    Milivoj R. Belić
    Stanko N. Nikolić
    Nonlinear Dynamics, 2023, 111 : 12495 - 12509
  • [26] Localized solutions of inhomogeneous saturable nonlinear Schrödinger equation
    Maurilho R. da Rocha
    Ardiley T. Avelar
    Wesley B. Cardoso
    Nonlinear Dynamics, 2023, 111 : 4769 - 4777
  • [27] Phase transitions of breather of a nonlinear Schr?dinger equation in inhomogeneous optical fiber system
    Li, Bang-Qing
    OPTIK, 2020, 217
  • [28] Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrodinger equation
    Feng, Lian-Li
    Zhang, Tian-Tian
    APPLIED MATHEMATICS LETTERS, 2018, 78 : 133 - 140
  • [29] Soliton-like solutions of a derivative nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers
    Min Li
    Bo Tian
    Wen-Jun Liu
    Hai-Qiang Zhang
    Xiang-Hua Meng
    Tao Xu
    Nonlinear Dynamics, 2010, 62 : 919 - 929
  • [30] Breather, soliton and rogue wave of a two-component derivative nonlinear Schrodinger equation
    Jia, Hui-Xian
    Zuo, Da-Wei
    Li, Xiang-Hong
    Xiang, Xiao-Shuo
    PHYSICS LETTERS A, 2021, 405