Adomian Decomposition Method and Padé Approximants for Nonlinear Differential-Difference Equations

被引:1
作者
LIU YanMing CHEN Yong Nonlinear Science Center and Department of MathematicsNingbo UniversityNingbo China Institute of Theoretical ComputingEast China Normal UniversityShanghai China [1 ,1 ,2 ,1 ,315211 ,2 ,200062 ]
机构
关键词
Adomian decomposition method; Padé; approximants; relativistic Toda lattice equation; modified Volterra lattice equation;
D O I
暂无
中图分类号
O175.7 [差分微分方程];
学科分类号
070104 ;
摘要
<正> Combining Adomian decomposition method(ADM)with Padé approximants,we solve two differential-difference equations(DDEs):the relativistic Toda lattice equation and the modified Volterra lattice equation.With thehelp of symbolic computation Maple,the results obtained by ADM-Pade technique are compared with those obtainedby using ADM alone.The numerical results demonstrate that ADM-Pade technique give the approximate solution withfaster convergence rate and higher accuracy and relative in larger domain of convergence than using ADM.
引用
收藏
页码:581 / 587
页数:7
相关论文
共 2 条
[1]  
Extension of the spectral-transform method for solving nonlinear differential difference equations[J] . D. Levi,O. Ragnisco.Lettere al Nuovo Cimento . 1978 (17)
[2]  
D.Baldwin,Gktas,and W.Hereman. Comput.Phys.Commun . 2004