PERTURBATION OF WAVELET AND GABOR FRAMES

被引:0
作者
Ivana Carrizo
Sergio Favier
机构
[1] Instituto de Matemática Aplicada San Luis Universidad Nacional de San Luis
[2] Instituto de Matemática Aplicada San Luis Universidad Nacional de San Luis AvEjército de Los Andes San Luis
[3] Argentina
[4] AvEjército de Los Andes San Luis
关键词
Riesz basis; Gabor frame; wavelet frame; perturbation;
D O I
暂无
中图分类号
O241 [数值分析];
学科分类号
070102 ;
摘要
In this work two aspects of theory of frames are presented: a side necessary condition on irregular wavelet frames is obtained, another perturbation of wavelet and Gabor frames is considered. Specifically, we present the results obtained on frame stability when one disturbs the mother of wavelet frame, or the parameter of dilatation, and in Gabor frames when the generating function or the parameter of translation are perturbed. In all cases we work without demanding compactness of the support, neither on the generating function, nor on its Fourier transform.
引用
收藏
页码:238 / 254
页数:17
相关论文
共 8 条
[1]  
Perturbations ofBanachFrames andAtomicDescompositions. Christensen,O,Heil,C. Mathematische Nachrichten . 1997
[2]  
On theStability ofWaveletandGaborFrames. Zhang,J. TheJournalofFourierAnalysisandApplications . 1999
[3]  
Perturbations ofWeyle-HeisenbergFrames. Casazza,P.G,Christensen,O,Lammers,M.C. HokkaidoMathematicalJournal . 2002
[4]  
Inequalities of Littlewood-Paley type for frames and wavelets. Chui C K,Shi X L. SIAM Journal on Mathematical Analysis . 1993
[5]  
TenLectures onWavelets. Daubechies,I. . 1992
[6]  
Frames andRieszBases. Favier,S,Zalik,R. FourierSeriesApp.Theory andApplica-tions . 1996
[7]  
On theStability ofFrames andRieszBases. Favier,S.,Zalik,R. Appl.Comput.Harm.Anal . 1995
[8]  
Stability ofWaveletFrames aboutDilation andTranslation. Zhang,J. Proceedings of the American Mathematical Society . 2001