An Anisotropic Posteriori Error Estimator of Bilinear Element

被引:0
|
作者
YIN Li~(1
2.Department of Mathematics
机构
关键词
finite element method; anisotropic; superconvergence; posteriori error estimate;
D O I
暂无
中图分类号
O242.1 [数学模拟];
学科分类号
摘要
The main aim of this paper is to give an anisotropic posteriori error estimator. We firstly study the convergence of bilinear finite element for the second order problem under anisotropic meshes.By using some novel approaches and techniques,the optimal error estimates and some superconvergence results are obtained without the regularity assumption and quasi-uniform assumption requirements on the meshes.Then,based on these results, we give an anisotropic posteriori error estimate for the second problem.
引用
收藏
页码:492 / 499
页数:8
相关论文
共 50 条
  • [41] A simple and effective gradient recovery scheme and a posteriori error estimator for the Virtual Element Method (VEM)
    Chi, Heng
    da Veiga, Lourenco Beirao
    Paulino, Glaucio H.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 347 : 21 - 58
  • [42] An a posteriori error estimator for the weak Galerkin least-squares finite-element method
    Adler, James H.
    Hu, Xiaozhe
    Mu, Lin
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 362 : 383 - 399
  • [43] Robust equilibrated a posteriori error estimator for higher order finite element approximations to diffusion problems
    Cai, Difeng
    Cai, Zhiqiang
    Zhang, Shun
    NUMERISCHE MATHEMATIK, 2020, 144 (01) : 1 - 21
  • [44] A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity
    Barrios, Tomas P.
    Gatica, Gabriel N.
    Gonzalez, Maria
    Heuer, Norbert
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (05): : 843 - 869
  • [45] Residual-Based A Posteriori Error Estimator for the Mixed Finite Element Approximation of the Biharmonic Equation
    Gudi, Thirupathi
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (02) : 315 - 328
  • [46] A posteriori L2 error estimation on anisotropic tetrahedral finite element meshes
    Kunert, G
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (02) : 503 - 523
  • [47] Adaptive finite element computational fluid dynamics using an anisotropic error estimator
    Almeida, RC
    Feijóo, RA
    Galeao, AC
    Padra, C
    Silva, RS
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 182 (3-4) : 379 - 400
  • [48] An a posteriori error estimator for the spectral fractional power of the Laplacian
    Bulle, Raphael
    Barrera, Olga
    Bordas, Stephane P. A.
    Chouly, Franz
    Hale, Jack S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 407
  • [49] A local a posteriori error estimator based on equilibrated fluxes
    Luce, R
    Wohlmuth, BI
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (04) : 1394 - 1414
  • [50] An a posteriori error estimator for shape optimization: application to EIT
    Giacomini, M.
    Pantz, O.
    Trabelsi, K.
    5TH INTERNATIONAL WORKSHOP ON NEW COMPUTATIONAL METHODS FOR INVERSE PROBLEMS (NCMIP2015), 2015, 657