An Anisotropic Posteriori Error Estimator of Bilinear Element

被引:0
|
作者
YIN Li~(1
2.Department of Mathematics
机构
关键词
finite element method; anisotropic; superconvergence; posteriori error estimate;
D O I
暂无
中图分类号
O242.1 [数学模拟];
学科分类号
摘要
The main aim of this paper is to give an anisotropic posteriori error estimator. We firstly study the convergence of bilinear finite element for the second order problem under anisotropic meshes.By using some novel approaches and techniques,the optimal error estimates and some superconvergence results are obtained without the regularity assumption and quasi-uniform assumption requirements on the meshes.Then,based on these results, we give an anisotropic posteriori error estimate for the second problem.
引用
收藏
页码:492 / 499
页数:8
相关论文
共 50 条
  • [1] An anisotropic A posteriori error estimator for CFD
    Feijóo, RA
    Padra, C
    Quintana, F
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2002, 16 (04) : 297 - 304
  • [2] An a posteriori error estimator for anisotropic refinement
    Siebert, KG
    NUMERISCHE MATHEMATIK, 1996, 73 (03) : 373 - 398
  • [3] An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes
    Gerd Kunert
    Numerische Mathematik, 2000, 86 : 471 - 490
  • [4] An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes
    Kunert, G
    NUMERISCHE MATHEMATIK, 2000, 86 (03) : 471 - 490
  • [5] A hybrid a posteriori error estimator for conforming finite element approximations
    Cai, Difeng
    Cai, Zhiqiang
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 339 : 320 - 340
  • [6] Anisotropic a posteriori error estimate for the virtual element method
    Antonietti, P. F.
    Berrone, S.
    Borio, A.
    D'Auria, A.
    Verani, M.
    Weisser, S.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) : 1273 - 1312
  • [7] A posteriori error estimator for eigenvalue problems by mixed finite element method
    JIA ShangHui
    CHEN HongTao
    XIE HeHu
    ScienceChina(Mathematics), 2013, 56 (05) : 888 - 901
  • [8] A residual a posteriori error estimator for the finite element solution of the Helmholtz equation
    Irimie, S
    Bouillard, P
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (31) : 4027 - 4042
  • [9] A posteriori error estimator for eigenvalue problems by mixed finite element method
    ShangHui Jia
    HongTao Chen
    HeHu Xie
    Science China Mathematics, 2013, 56 : 887 - 900
  • [10] A Posteriori Error Estimator for Finite Element Simulation of Electromagnetic Material Processing
    Jesus O, Garcia C.
    Jose R, Alves Z.
    Julien, Barlier
    Francois, Bay
    IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (12)