A NECESSARY AND SUFFICIENT CONDITION FOR GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO CAUCHY PROBLEM OF QUASILINEAR HYPERBOLIC SYSTEMS IN DIAGONAL FORM

被引:0
作者
郑永树
刘法贵
机构
关键词
Cauchy problem; global classical solution; blow-up; life s;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
This article considers Cauchy problem for quasilinear hyperbolic systems in diagonal form. A necessary and sufficient condition in guaranteeing that Cauchy problem admits a unique global classical solution on t ≥ 0 is obtained, and a sharp estimate of the life span for the classical solution is given.
引用
收藏
页码:571 / 576
页数:6
相关论文
共 9 条
[1]  
A necessary and sufficient condition for global existence of smooth solution toCauchy problem for first order quasilinear hyperbolic systems (in Chinese). Li Tatsien,Qin Tiehu. Acta Mathematica . 1985
[2]  
Global classical solutions for general quasilinear hyperbolic systems with decay initial data. Li Tatsien,Zhou Yi,Kong Dexing. Nonlinear Analysis . 1997
[3]  
Development of singularities in the nonlinear waves for quasi-linear hyperbolic partial differential equations. Liu Taiping. Journal of Differential Equations . 1979
[4]  
Formation of singularities in one-dimensional nonlinear wave propagation. John F. Communications on Pure and Applied Mathematics . 1974
[5]  
Weak linear degene racy and global classical solutions for general quasilinear hyperbolic systems. Li Tatsien,Zhou Yi,Kong Dexing. Comm.in Partial Differential Equations . 1994
[6]   可約化准线性双曲型方程組的整体連續解的存在性 [J].
林龙威 .
吉林大学自然科学学报, 1963, (04) :83-96
[7]  
Global classical solutions for general quasilinear hyperbolic systems with decay initial data[J] . Li Ta-Tsien,Zhou Yi,Kong De-Xing. &nbspNonlinear Analysis . 1997 (8)
[8]  
Global resolvability for quasilinear hyperbolic systems. Li Caizhong,Zhu Changjiang,Zhao Huijiang. JPartial Diff Eqs . 1995
[9]  
Global smooth solutions for quasilinear hyperbolic systems in diagonal form. Hoff D. Journal of Mathematical Analysis and Applications . 1982