A note on the tree decompositions of graphs

被引:0
作者
SHI MinyongInstitute of Software Chinese Academy of Sciences Beijing China [100080 ]
机构
关键词
tree decomposition; singular vertex; maximal planar bipartite graph;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
<正> IN this note all graphs are undirected, finite and simple. For a subgraph H of G,ε(H) andμ(H) denote the number of edges in H and the number of cycles in H respectively. H[X]denotes the subgraph of H induced by X. Given two disjoint subsets X and Y of V(G), wewrite EG(X, Y)={xy∈E(G)|x∈X, y∈Y}. Sometimes EG(H, Y)=EG(V(H),Y) is used for a subgraph H of G-Y. If T is a tree of G and e=uv∈G-E(T)with{u,v}V(T), then T + e contains a unique cycle, denoted by C(T, e).A tree-decomposition {T1, T2, …, Tk} of a graph G is a partition of E (G), say,E(G)=E1 U E2 U…U Ek, such that for each i with 1≤i≤k, Ti=G[Ei] is a tree. We
引用
收藏
页码:1948 / 1952
页数:5
相关论文
共 50 条
[21]   Optimizing Tree Decompositions in MSO [J].
Bojanczyk, Mikolaj ;
Pilipczuk, Michal .
34TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2017), 2017, 66
[22]   OPTIMIZING TREE DECOMPOSITIONS IN MSO [J].
Bojańczyk M. ;
Pilipczuk M. .
Logical Methods in Computer Science, 2022, 18 (01)
[23]   Decoding Tree Decompositions from Permutations [J].
da Silva, Samuel Eduardo ;
Souza, Ueverton S. .
LATIN 2024: THEORETICAL INFORMATICS, PT I, 2024, 14578 :19-34
[24]   On tree decompositions whose trees are minors [J].
Blanco, Pablo ;
Cook, Linda ;
Hatzel, Meike ;
Hilaire, Claire ;
Illingworth, Freddie ;
McCarty, Rose .
JOURNAL OF GRAPH THEORY, 2024, 106 (02) :296-306
[25]   Minimum size tree-decompositions [J].
Li, Bi ;
Moataz, Fatima Zahra ;
Nisse, Nicolas ;
Suchan, Karol .
DISCRETE APPLIED MATHEMATICS, 2018, 245 :109-127
[26]   End spaces and tree-decompositions [J].
Koloschin, Marcel ;
Krill, Thilo ;
Pitz, Max .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 161 :147-179
[27]   Bounded-Diameter Tree-Decompositions [J].
Eli Berger ;
Paul Seymour .
Combinatorica, 2024, 44 :659-674
[28]   On the Relevance of Optimal Tree Decompositions for Constraint Networks [J].
Jegou, Philippe ;
Kanso, Helene ;
Terrioux, Cyril .
2018 IEEE 30TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2018, :738-743
[29]   Tangles, tree-decompositions and grids in matroids [J].
Geelen, Jim ;
Gerards, Bert ;
Whittle, Geoff .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (04) :657-667
[30]   Tree-decompositions with bags of small diameter [J].
Dourisboure, Yon ;
Gavoille, Cyril .
DISCRETE MATHEMATICS, 2007, 307 (16) :2008-2029