A note on the tree decompositions of graphs

被引:0
|
作者
SHI MinyongInstitute of Software
机构
关键词
tree decomposition; singular vertex; maximal planar bipartite graph;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
IN this note all graphs are undirected, finite and simple. For a subgraph H of G,ε(H) andμ(H) denote the number of edges in H and the number of cycles in H respectively. H[X]denotes the subgraph of H induced by X. Given two disjoint subsets X and Y of V(G), wewrite E(X, Y)={xy∈E(G)|x∈X, y∈Y}. Sometimes E(H, Y)=EG(V(H),Y) is used for a subgraph H of G-Y. If T is a tree of G and e=uv∈G-E(T)with{u,v}V(T), then T + e contains a unique cycle, denoted by C(T, e).A tree-decomposition {T, T, …, T} of a graph G is a partition of E (G), say,E(G)=EU EU…U E, such that for each i with 1≤i≤k, T=G[E] is a tree. We
引用
收藏
页码:1948 / 1952
页数:5
相关论文
共 50 条
  • [1] A note on the tree decompositions of graphs
    Shi, MY
    CHINESE SCIENCE BULLETIN, 1997, 42 (23): : 1948 - 1952
  • [2] Tree-decompositions of graphs ( I )
    SHI MinyongInstitute of Systems Science
    Beijing 100080
    ChineseScienceBulletin, 1997, (04) : 277 - 281
  • [3] Tree-decompositions of graphs .1.
    Shi, MY
    CHINESE SCIENCE BULLETIN, 1997, 42 (04): : 277 - 281
  • [4] ORTHOGONAL TREE DECOMPOSITIONS OF GRAPHS
    Dujmovic, Vida
    Joret, Gwenael
    Morin, Pat
    Norin, Sergey
    Wood, David R.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (02) : 839 - 863
  • [5] Tree decompositions for a class of graphs
    Shi, MY
    Li, YJ
    Tian, F
    DISCRETE MATHEMATICS, 1998, 189 (1-3) : 221 - 232
  • [6] Constructing tree decompositions of graphs with bounded gonality
    Hans L. Bodlaender
    Josse van Dobben de Bruyn
    Dion Gijswijt
    Harry Smit
    Journal of Combinatorial Optimization, 2022, 44 : 2681 - 2699
  • [7] Constructing tree decompositions of graphs with bounded gonality
    Bodlaender, Hans L.
    de Bruyn, Josse van Dobben
    Gijswijt, Dion
    Smit, Harry
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (04) : 2681 - 2699
  • [8] Tree decompositions of graphs without large bipartite holes
    Kim, Jaehoon
    Kim, Younjin
    Liu, Hong
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (01) : 150 - 168
  • [9] On tree-decompositions of one-ended graphs
    Carmesin, Johannes
    Lehner, Florian
    Moller, Rognvaldur G.
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (03) : 524 - 539
  • [10] A note on root choice for parallel processing of tree decompositions
    Li, Yueping
    Lu, Yunting
    AGENT AND MULTI-AGENT SYSTEMS: TECHNOLOGIES AND APPLICATIONS, PROCEEDINGS, 2008, 4953 : 713 - +