CONVERGENCE OF WEIGHTED AVERAGES OF MARTINGALES IN NONCOMMUTATIVE BANACH FUNCTION SPACES

被引:0
作者
张超 [1 ]
侯友良 [2 ]
机构
[1] School of Mathematics and Statistics,Wuhan University
[2] Departamento de Matema'ticas,Facultad de Ciencias,Universidad Autónoma de Madrid,Madrid ,Spain
关键词
Weighted average; noncommutative martingales; noncommutative Banach function spaces; uniform integrability;
D O I
暂无
中图分类号
O177.2 [巴拿赫空间及其线性算子理论];
学科分类号
070104 ;
摘要
Let x =(xn) n ≥1 be a martingale on a noncommutative probability space(M,τ) and(wn) n ≥1 a sequence of positive numbers such that Wn = ∑nk=1 wk →∞ as n →∞.We prove that x =(xn) n≥1 converges in E(M) if and only if(σn(x))n≥1 converges in E(M),where E(M) is a noncommutative rearrangement invariant Banach function space with the Fatou property and σ n(x) is given by k=1 If in addition,E(M) has absolutely continuous norm,then,(σ n(x)) n ≥1 converges in E(M) if and only if x =(x n) n ≥1 is uniformly integrable and its limit in measure topology x ∞∈ E(M).
引用
收藏
页码:735 / 744
页数:10
相关论文
共 5 条
[1]   Convergence of weighted averages of martingales in Banach function spaces [J].
Kikuchi, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 244 (01) :39-56
[2]   Non-commutative Martingale inequalities [J].
Pisier, G ;
Xu, QH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (03) :667-698
[3]  
Fully symmetric operator spaces[J] . Peter G. Dodds,Theresa K. Dodds,Ben Pagter. Integral Equations and Operator Theory . 1992 (6)
[4]   NON-COMMUTATIVE BANACH FUNCTION-SPACES [J].
DODDS, PG ;
DODDS, TKY ;
DEPAGTER, B .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (04) :583-597
[5]  
Weighted averages of submartingales[J] . Norihiko Kazamaki,Tamotsu Tsuchikura. Tohoku Mathematical Journal . 1967 (3)