Bounded multi-soliton solutions and their asymptotic analysis for the reversal-time nonlocal nonlinear Schr?dinger equation

被引:0
作者
Wei-Jing Tang
Zhang-nan Hu
Liming Ling
机构
[1] DepartmentofMathematics,SouthChinaUniversityofTechnology
关键词
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
070104 ;
摘要
In this paper, we construct the Darboux transformation(DT) for the reverse-time integrable nonlocal nonlinear Schr?dinger equation by loop group method. Then we utilize the DT to derive soliton solutions with zero seed. We investigate the dynamical properties for those solutions and present a sufficient condition for the non-singularity of multi-soliton solutions.Furthermore, the asymptotic analysis of bounded multi-solutions has also been established by the determinant formula.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 50 条
[31]   A novel general nonlocal reverse-time nonlinear Schrödinger equation and its soliton solutions by Riemann–Hilbert method [J].
Jianping Wu .
Nonlinear Dynamics, 2023, 111 :16367-16376
[32]   Soliton solutions to time-fractional nonlinear Schrödinger equation with cubic-quintic-septimal in weakly nonlocal media [J].
Mahmood, Salim S. ;
Murad, Muhammad Amin S. .
PHYSICS LETTERS A, 2025, 532
[33]   Soliton and breather solutions of a reverse time nonlocal coupled nonlinear Schrödinger equation with four-wave mixing effect [J].
Wei, Jiao ;
Wang, Junyan ;
Li, Yihao .
APPLIED MATHEMATICS LETTERS, 2024, 157
[34]   Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation [J].
汪保 ;
张钊 ;
李彪 .
Chinese Physics Letters, 2020, 37 (03) :13-16
[35]   Some optical soliton solutions with bifurcation analysis of the paraxial nonlinear Schrödinger equation [J].
S. M. Rayhanul Islam ;
S. M. Yaisir Arafat ;
Hammad Alotaibi ;
Mustafa Inc .
Optical and Quantum Electronics, 2024, 56
[36]   Multi-soliton solutions of the N-component nonlinear Schrödinger equations via Riemann–Hilbert approach [J].
Yan Li ;
Jian Li ;
Ruiqi Wang .
Nonlinear Dynamics, 2021, 105 :1765-1772
[37]   Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation [J].
汪保 ;
张钊 ;
李彪 .
Chinese Physics Letters, 2020, (03) :13-16
[38]   Analysis of neural network methods for obtaining soliton solutions of the nonlinear Schrödinger equation [J].
Moloshnikov, Ivan A. ;
Sboev, Alexander G. ;
Kutukov, Aleksandr A. ;
Rybka, Roman B. ;
Kuvakin, Mikhail S. ;
Fedorov, Oleg O. ;
Zavertyaev, Saveliy V. .
CHAOS SOLITONS & FRACTALS, 2025, 192
[39]   Asymptotic stability of multi-soliton solutions for nonlinear Schrodinger equations [J].
Perelman, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (7-8) :1051-1095
[40]   Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schr?dinger equation [J].
张雪峰 ;
许韬 ;
李敏 ;
孟悦 .
Chinese Physics B, 2023, 32 (01) :283-291