Bounded multi-soliton solutions and their asymptotic analysis for the reversal-time nonlocal nonlinear Schr?dinger equation

被引:0
作者
Wei-Jing Tang
Zhang-nan Hu
Liming Ling
机构
[1] DepartmentofMathematics,SouthChinaUniversityofTechnology
关键词
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
070104 ;
摘要
In this paper, we construct the Darboux transformation(DT) for the reverse-time integrable nonlocal nonlinear Schr?dinger equation by loop group method. Then we utilize the DT to derive soliton solutions with zero seed. We investigate the dynamical properties for those solutions and present a sufficient condition for the non-singularity of multi-soliton solutions.Furthermore, the asymptotic analysis of bounded multi-solutions has also been established by the determinant formula.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 50 条
[21]   Dark Multi-Soliton Solution of the Nonlinear Schrödinger Equation with Non-Vanishing Boundary [J].
Hao Cai ;
Feng-Ming Liu ;
Nian-Ning Huang .
International Journal of Theoretical Physics, 2005, 44 :255-265
[22]   Life span of solutions to a nonlocal in time nonlinear fractional Schrödinger equation [J].
M. Kirane ;
A. Nabti .
Zeitschrift für angewandte Mathematik und Physik, 2015, 66 :1473-1482
[23]   Families of nonsingular soliton solutions of a nonlocal Schrödinger–Boussinesq equation [J].
Ying Shi ;
Yongshuai Zhang ;
Shuwei Xu .
Nonlinear Dynamics, 2018, 94 :2327-2334
[24]   INTEGRABLE NONLOCAL NONLINEAR SCHRÖDINGER HIERARCHIES OF TYPE (-?*,?) AND SOLITON SOLUTIONS [J].
Ma, Wen-xiu .
REPORTS ON MATHEMATICAL PHYSICS, 2023, 92 (01) :19-36
[25]   Analytic soliton solutions of nonlinear extensions of the Schrödinger equation [J].
Dodge, Tom ;
Schweitzer, Peter .
PHYSICA D-NONLINEAR PHENOMENA, 2025, 476
[26]   Multi-soliton solutions for the coupled modified nonlinear Schrdinger equations via Riemann–Hilbert approach [J].
康周正 ;
夏铁成 ;
马茜 .
Chinese Physics B, 2018, 27 (07) :176-183
[27]   Riemann–Hilbert approach and soliton analysis of a novel nonlocal reverse-time nonlinear Schrödinger equation [J].
Jianping Wu .
Nonlinear Dynamics, 2024, 112 :4749-4760
[28]   Long-time asymptotic behavior for the nonlocal nonlinear Schr?dinger equation in the solitonic region [J].
Gaozhan Li ;
Yiling Yang ;
Engui Fan .
Science China(Mathematics), 2025, 68 (02) :379-398
[29]   Multi-soliton solutions for a nonlocal complex coupled dispersionless equation [J].
Ji, Jia-Liang ;
Yang, Jun ;
Zhu, Zuo-Nong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 82
[30]   Long-time asymptotic behavior for the nonlocal nonlinear Schrödinger equation in the solitonic region [J].
Li, Gaozhan ;
Yang, Yiling ;
Fan, Engui .
SCIENCE CHINA-MATHEMATICS, 2025, 68 (02) :379-398