Bounded multi-soliton solutions and their asymptotic analysis for the reversal-time nonlocal nonlinear Schr?dinger equation

被引:0
|
作者
Wei-Jing Tang [1 ]
Zhang-nan Hu [1 ]
Liming Ling [1 ]
机构
[1] Department of Mathematics, South China University of Technology
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
070104 ;
摘要
In this paper, we construct the Darboux transformation(DT) for the reverse-time integrable nonlocal nonlinear Schr?dinger equation by loop group method. Then we utilize the DT to derive soliton solutions with zero seed. We investigate the dynamical properties for those solutions and present a sufficient condition for the non-singularity of multi-soliton solutions.Furthermore, the asymptotic analysis of bounded multi-solutions has also been established by the determinant formula.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 50 条
  • [1] Bounded multi-soliton solutions and their asymptotic analysis for the reversal-time nonlocal nonlinear Schrodinger equation
    Tang, Wei-Jing
    Hu, Zhang-nan
    Ling, Liming
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2021, 73 (10)
  • [2] Soliton solutions for the nonlocal nonlinear Schrödinger equation
    Xin Huang
    Liming Ling
    The European Physical Journal Plus, 131
  • [3] Soliton solutions of the space–time fractional nonlocal nonlinear Schrödinger equation
    Zhang L.
    Liu H.
    Optik, 2023, 289
  • [4] Inverse Scattering Transform and Multi-soliton Solutions for the Sextic Nonlinear Schrödinger Equation
    Xin Wu
    Shou-fu Tian
    Jin-Jie Yang
    Acta Mathematicae Applicatae Sinica, English Series, 2025, 41 (2): : 536 - 555
  • [5] Inverse Scattering Transform and Multi-soliton Solutions for the Sextic Nonlinear Schr?dinger Equation
    Xin WU
    Shou-fu TIAN
    Jin-Jie YANG
    Acta Mathematicae Applicatae Sinica, 2025, 41 (02) : 536 - 555
  • [6] Multi-Soliton Solutions for the Nonlocal Kundu-Nonlinear Schrödinger Equation with Step-Like Initial Data
    Ling Lei
    Shou-Fu Tian
    Yan-Qiang Wu
    Journal of Nonlinear Mathematical Physics, 2023, 30 : 1661 - 1679
  • [7] Multi-soliton solutions and interaction for a (2+1)-dimensional nonlinear Schrödinger equation
    Li, Yan-Yan
    Jia, Hui-Xian
    Zuo, Da-Wei
    OPTIK, 2021, 241
  • [8] Riemann–Hilbert method and multi-soliton solutions of the Kundu-nonlinear Schrödinger equation
    Xue-Wei Yan
    Nonlinear Dynamics, 2020, 102 : 2811 - 2819
  • [9] Exact chirped multi-soliton solutions of the nonlinear Schr(o|¨)dinger equation with varying coefficients
    郝瑞宇
    李录
    杨荣草
    李仲豪
    周国生
    Chinese Optics Letters, 2005, (03) : 136 - 139
  • [10] The multi-soliton and multiple-poles soliton solutions for the six-order nonlinear Schrödinger equation
    Mengtao Xu
    Nan Liu
    Chunxiao Guo
    Nonlinear Dynamics, 2021, 105 : 1741 - 1751