Whittaker Modules for the Derivation Lie Algebra of Torus with Two Variables

被引:0
作者
Hai Feng LIAN [1 ]
Xiu Fu ZHANG [2 ]
机构
[1] Department of Mathematics,Fujian Agriculture and Forestry University
[2] School of Mathematics and Statistics,Jiangsu Normal University
基金
中国国家自然科学基金;
关键词
Whittaker vector; Whittaker module; simple module; derivation Lie algebra;
D O I
暂无
中图分类号
O152.5 [李群];
学科分类号
070104 ;
摘要
Let L be the derivation Lie algebra of C[t±11,t±12].Given a triangle decomposition L=L+⊕h⊕L-,we define a nonsingular Lie algebra homomorphism ψ:L+→C and the universal Whittaker L-module Wψof type ψ.We obtain all Whittaker vectors and submodules of Wψ.Moreover,all simple Whittaker L-modules of type ψ are determined.
引用
收藏
页码:1177 / 1188
页数:12
相关论文
共 13 条
[1]   Virasoro-相似代数的导子代数 [J].
姜翠波 ;
孟道骥 .
数学进展, 1998, (02) :80-88
[2]  
Simple Virasoro modules which are locally finite over a positive part[J] . Volodymyr Mazorchuk,Kaiming Zhao.Selecta Mathematica . 2014 (3)
[3]  
Irreducible Virasoro modules from tensor products (II)[J] . Haijun Tan,Kaiming Zhao.Journal of Algebra . 2013
[4]   Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras [J].
Christodoulopoulou, Konstantina .
JOURNAL OF ALGEBRA, 2008, 320 (07) :2871-2890
[5]  
Classification of simple weight Virasoro modules with a finite-dimensional weight space[J] . Volodymyr Mazorchuk,Kaiming Zhao.Journal of Algebra . 2006 (1)
[6]  
Verma modules over Virasoro-like algebras[J] . Xian-Dong Wang,Kaiming Zhao.Journal of the Australian Mathematical Society . 2006 (2)
[7]  
Nonzero level Harish-Chandra modules over the Virasoro-like algebra[J] . Weiqiang Lin,Shaobin Tan.Journal of Pure and Applied Algebra . 2005 (1)
[8]   Representations of the Lie algebra of derivations for quantum torus [J].
Lin, WQ ;
Tan, SB .
JOURNAL OF ALGEBRA, 2004, 275 (01) :250-274
[9]   Representations of the Virasoro-like algebra and its q-analog [J].
Zhang, HC ;
Zhao, KM .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (14) :4361-4372
[10]   DERIVATIONS OF SKEW POLYNOMIAL-RINGS [J].
OSBORN, JM ;
PASSMAN, DS .
JOURNAL OF ALGEBRA, 1995, 176 (02) :417-448