Equivariant eta forms and equivariant differential K-theory

被引:0
作者
Bo Liu
机构
[1] SchoolofMathematicalSciences,ShanghaiKeyLaboratoryofPMMP,EastChinaNormalUniversity
关键词
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
In this paper, for a compact Lie group action, we prove the anomaly formula and the functoriality of the equivariant Bismut-Cheeger eta forms with perturbation operators when the equivariant family index vanishes. In order to prove them, we extend the Melrose-Piazza spectral section and its main properties to the equivariant case and introduce the equivariant version of the Dai-Zhang higher spectral flow for arbitrarydimensional fibers. Using these results, we construct a new analytic model of the equivariant differential K-theory for compact manifolds when the group action has finite stabilizers only, which modifies the Bunke-Schick model of the differential K-theory. This model could also be regarded as an analytic model of the differential Ktheory for compact orbifolds. Especially, we answer a question proposed by Bunke and Schick(2009) about the well-definedness of the push-forward map.
引用
收藏
页码:2159 / 2206
页数:48
相关论文
共 32 条
[1]   Real embedding and equivariant eta forms [J].
Bo Liu .
Mathematische Zeitschrift, 2019, 292 :849-878
[2]   A Hilbert bundle description of differential K-theory [J].
Gorokhovsky, Alexander ;
Lott, John .
ADVANCES IN MATHEMATICS, 2018, 328 :661-712
[3]   Functoriality of equivariant eta forms [J].
Liu, Bo .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2017, 11 (01) :225-307
[4]   Differential orbifold K-theory [J].
Bunke, Ulrich ;
Schick, Thomas .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2013, 7 (04) :1027-1104
[5]   An elementary differential extension of odd K-theory [J].
Tradler, Thomas ;
Wilson, Scott O. ;
Zeinalian, Mahmoud .
JOURNAL OF K-THEORY, 2013, 12 (02) :331-361
[6]   Loop groups and twisted K-theory I [J].
Freed, Daniel S. ;
Hopkins, Michael J. ;
Teleman, Constantin .
JOURNAL OF TOPOLOGY, 2011, 4 (04) :737-798
[7]  
An index theorem in differential $K$–theory[J] . Daniel S Freed,John Lott.Geometry & Topology . 2010 (2)
[8]  
Ramond-Ramond Fields, Fractional Branes and Orbifold Differential K-Theory[J] . Richard J. Szabo,Alessandro Valentino.Communications in Mathematical Physics . 2010 (3)
[9]   SMOOTH K-THEORY [J].
Bunke, Ulrich ;
Schick, Thomas .
ASTERISQUE, 2009, (328) :45-135
[10]   DIRECT IMAGE FOR SOME SECONDARY K-THEORIES [J].
Berthomieu, Alain .
ASTERISQUE, 2009, (327) :289-360