HLDER CONTINUOUS SOLUTIONS OF BOUSSINESQ EQUATIONS

被引:0
作者
陶涛 [1 ,2 ]
张立群 [3 ,4 ]
机构
[1] School of Mathematics Sciences, Peking University
[2] School of Mathematics, Shandong University
[3] Academy of Mathematic and System Science, CAS
[4] School of Mathematical Sciences, UCAS
关键词
Boussinesq equations; Hlder continuous solutions; prescribed kinetic energy;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
We show the existence of dissipative H¨older continuous solutions of the Boussinesq equations. More precise, for any β∈(0,1/5), a time interval [0, T ] and any given smooth energy profile e : [0, T ] →(0, ∞), there exist a weak solution(v, θ) of the 3 d Boussinesq equations such that(v, θ) ∈ Cβ(T~3× [0, T ]) with e(t) =′his T~3|v(x, t)|~2 dx for all t ∈ [0, T ]. Textend the result of [2] about Onsager’s conjecture into Boussinesq equation and improve our previous result in [30].
引用
收藏
页码:1591 / 1616
页数:26
相关论文
共 13 条
[1]   Dissipative Euler Flows with Onsager-Critical Spatial Regularity [J].
Buckmaster, Tristan ;
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (09) :1613-1670
[2]  
A heat flow approach to Onsager’s conjecture for the Euler equations on manifolds[J] . Philip Isett,Sung-Jin Oh.Transactions of the American Mathematical Society . 2015 (9)
[3]   Onsager's Conjecture Almost Everywhere in Time [J].
Buckmaster, Tristan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (03) :1175-1198
[4]  
Cauchy Problem for Dissipative H?lder Solutions to the Incompressible Euler Equations[J] . S. Daneri.Communications in Mathematical Physics . 2014 (2)
[5]   h-Principles for the Incompressible Euler Equations [J].
Choffrut, Antoine .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 210 (01) :133-163
[6]   THE h-PRINCIPLE AND THE EQUATIONS OF FLUID DYNAMICS [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 49 (03) :347-375
[7]   The Euler equations as a differential inclusion [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1417-1436
[8]  
On Admissibility Criteria for Weak Solutions of the Euler Equations[J] . Camillo Lellis,László Székelyhidi.Archive for Rational Mechanics and Analysis . 2009 (1)
[9]   Energy conservation and Onsager's conjecture for the Euler equations [J].
Cheskidov, A. ;
Constantin, P. ;
Friedlander, S. ;
Shvydkoy, R. .
NONLINEARITY, 2008, 21 (06) :1233-1252
[10]   Weak solutions with decreasing energy of incompressible Euler equations [J].
Shnirelman, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (03) :541-603