一阶非齐次拟线性双曲组的柯西问题整体经典解的存在性

被引:3
作者
武佩霞
机构
[1] 复旦大学数学科学学院
关键词
整体经典解; 柯西问题; 弱线性退化; 匹配条件;
D O I
暂无
中图分类号
O175.27 [双曲型方程];
学科分类号
摘要
本文考察了弱线性退化的一阶非齐次拟线性严格双曲组具有小初值的柯西问题.在非齐次项满足匹配条件的假设下,给出了精细的波的分解公式,利用这些公式,证明了整体C1解的存在唯一性和稳定性.
引用
收藏
页码:93 / 108
页数:16
相关论文
共 12 条
  • [1] THE GEOMETRY OF CONTINOUS GLIMM FUNCTIONALS. SCHATZMAN M. LECTURES IN APPLIED MATHEMATICS . 1986
  • [2] A remark on the normalized coordinates and its applications to quasilinear hyperbolic systems. Li T. T. Optimal Control and Partial Differential Equations . 2001
  • [3] Global classical solutions for general quasilinear hyperbolic systems with decay initial data. Li T. T,Zhou Y,Kong D. X. Nonlinear Analysis . 1997
  • [4] CONTINOUS GLIMM FUNCTIONAL AND UNIQUENESS OF THE SOLUTION OF RIEMANN PROBLEM , INDIANA UNIVER. SCHATZMAN M. Mathematica Journal . 1985
  • [5] Cauchy problem for first order quasilinear hyperbolic systems. Kong D. X. Journal of Fudan University (Natural Science) . 1994
  • [6] Global classical solutions with small amplitude for general quasilinear hyperbolic systems. Li T. T.,Kong D. X. New Approaches in Nonlinear Analysis . 1999
  • [7] Boundary Value Problems for Quasilinear Hyperbolic Systems. Li T. T,Yu W. C. Duke University Mathematics Series . 1985
  • [8] GLOBAL EXISTENCE OF WEAKLY DISCONTIN UOUS SOLUTIONS TO THE CAUCHY PROBLEM WITH A KIND OF NON-SMOOTH INITIAL DATA FOR QUASILINEAR HYPERBOLIC SYSTEMS[J]. LI TATSIEN;WANG LIBIN Department of Mathematics, Fudan University, Shanghai 200433, China. E-mail: dqli@fudan.edu.cn Department of Mechanics, Fudan University, Shanghai 200433, China..  Chinese Annals of Mathematics. 2004(03)
  • [9] GLOBAL CLASSICAL SOLUTIONS TO QUASILINEAR HYPERBOLIC SYSTEMS WITH WEAK LINEAR DEGENERACY[J]. ZHOU Yi InstituteofMathematics,FudanUniversity,Shanghai200433,China..  Chinese Annals of Mathematics. 2004(01)
  • [10] THE LIFESPAN OF CLASSICAL SOLUTIONS OF NONLINEAR HYPERBOLIC EQUATIONS. HORMANDER L. LECTURE NOTES IN MATH, SPRINGER . 1987