Given a sequence of mixing random variables {X1,Xn;n≥1} taking values in a separable Banach space B,and Sn denoting the partial sum,a general law of the iterated logarithm is established,that is,we have with probability one,lim supn→∞‖Sn‖/cn = α0 < ∞ for a regular normalizing sequence {cn}1,where α 0 is a precise value.