Hausdorff measure of Sierpinski carpet

被引:0
|
作者
王兴华
机构
[1] China
[2] Department of Mathematics
[3] Hangzhou 310028
[4] Zhejiang University
关键词
Sierpinski carpet; self-similar; fractal; Hausdorff measure;
D O I
暂无
中图分类号
O182 [解析几何];
学科分类号
摘要
The estimate of Hausdorff measure H3(F) of Sierpinski carpet F with Hausdorff dimension s = log8/log3 is derived as
引用
收藏
页码:65 / 69
页数:5
相关论文
共 50 条
  • [41] Chaos for the Sierpinski Carpet
    Chen Ercai
    Journal of Statistical Physics, 1997, 88 : 979 - 984
  • [42] On dynamics of the Sierpinski carpet
    Boronski, Jan P.
    Oprocha, Piotr
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (03) : 340 - 344
  • [43] ON THE RESISTANCE OF THE SIERPINSKI CARPET
    BARLOW, MT
    BASS, RF
    PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1990, 431 (1882): : 345 - 360
  • [44] Chaos for the Sierpinski carpet
    Chen, EC
    JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (3-4) : 979 - 984
  • [45] Sierpinski carpet fractal antenna
    Kadir, M. F. Abd
    Ja'afar, A. S.
    Aziz, M. Z. A. Abd
    2007 ASIA-PACIFIC CONFERENCE ON APPLIED ELECTROMAGNETICS, PROCEEDINGS, 2007, : 269 - 272
  • [46] Maximum density for the Sierpinski carpet
    Jia, Baoguo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (10) : 1615 - 1621
  • [47] Sound diffraction at Sierpinski carpet
    Lyamshev, LM
    Urusovskii, IA
    ACOUSTICAL PHYSICS, 2003, 49 (06) : 700 - 703
  • [48] Hall conductivity of a Sierpinski carpet
    Iliasov, Askar A.
    Katsnelson, Mikhail, I
    Yuan, Shengjun
    PHYSICAL REVIEW B, 2020, 101 (04)
  • [49] MULTIFRACTAL DECOMPOSITION OF THE SIERPINSKI CARPET
    SIMPELAERE, D
    CHAOS SOLITONS & FRACTALS, 1995, 5 (11) : 2153 - 2170
  • [50] THE CORRELATION DIMENSION OF THE SIERPINSKI CARPET
    SIMPELAERE, D
    CHAOS SOLITONS & FRACTALS, 1994, 4 (12) : 2223 - 2235