ON CONTINUATION CRITERIA FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS IN LORENTZ SPACES

被引:0
|
作者
王艳青 [1 ]
魏巍 [2 ]
吴刚 [3 ]
叶嵎林 [4 ]
机构
[1] Department of Mathematics and Information Science,Zhengzhou University of Light Industry
[2] Center for Nonlinear Studies,School of Mathematics,Northwest University
[3] School of Mathematical Sciences,University of Chinese Academy of Sciences
[4] School of Mathematics and Statistics,Henan University
基金
中国博士后科学基金;
关键词
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper,we derive several new sufficient conditions of the non-breakdown of strong solutions for both the 3 D heat-conducting compressible Navier-Stokes system and nonhomogeneous incompressible Navier-Stokes equations.First,it is shown that there exists a positive constant ε such that the solution(ρ,u,θ) to the full compressible Navier-Stokes equations can be extended beyond t=T provided that one of the following two conditions holds:■To the best of our knowledge,this is the first continuation theorem allowing the time direction to be in Lorentz spaces for the compressible fluid.Second,we establish some blow-up criteria in anisotropic Lebesgue spaces for the finite blow-up time T~*:■Third,without the condition on p in(0.1) and(0.3),the results also hold for the 3 D nonhomogeneous incompressible Navier-Stokes equations.The appearance of a vacuum in these systems could be allowed.
引用
收藏
页码:671 / 689
页数:19
相关论文
共 50 条
  • [31] Global existence in critical spaces for compressible Navier-Stokes equations
    R. Danchin
    Inventiones mathematicae, 2000, 141 : 579 - 614
  • [32] Refined blow-up criteria for the full compressible Navier-Stokes equations involving temperature
    Jiu, Quansen
    Wang, Yanqing
    Ye, Yulin
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1895 - 1916
  • [33] DEFICIENCY OF COMPRESSIBLE, NAVIER-STOKES EQUATIONS
    GORDON, P
    SIAM REVIEW, 1973, 15 (01) : 253 - &
  • [34] A survey of the compressible Navier-Stokes equations
    Desjardins, B
    Lin, CK
    TAIWANESE JOURNAL OF MATHEMATICS, 1999, 3 (02): : 123 - 137
  • [35] On the barotropic compressible Navier-Stokes equations
    Mellet, A.
    Vasseur, A.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (03) : 431 - 452
  • [36] Hyperbolic compressible Navier-Stokes equations
    Hu, Yuxi
    Racke, Reinhard
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (04) : 3196 - 3220
  • [37] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Jinlu Li
    Zhaoyang Yin
    Xiaoping Zhai
    Acta Mathematica Scientia, 2022, 42 : 2131 - 2148
  • [38] Blow-up criteria for the Navier-Stokes equations of compressible fluids
    Fan, Jishan
    Jiang, Song
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2008, 5 (01) : 167 - 185
  • [39] GLOBAL WELL-POSEDNESS FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    李金禄
    殷朝阳
    翟小平
    Acta Mathematica Scientia, 2022, 42 (05) : 2131 - 2148
  • [40] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Li, Jinlu
    Yin, Zhaoyang
    Zhai, Xiaoping
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 2131 - 2148