一种基于全局代表点的快速最小二乘支持向量机稀疏化算法

被引:26
作者
马跃峰
梁循
周小平
机构
[1] 中国人民大学信息学院
基金
北京市自然科学基金;
关键词
最小二乘支持向量机; 稀疏化; 全局代表点; 局部密度; 全局离散度;
D O I
10.16383/j.aas.2017.c150720
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
非稀疏性是最小二乘支持向量机(Least squares support vector machine,LS-SVM)的主要不足,因此稀疏化是LS-SVM研究的重要内容.在目前LS-SVM稀疏化研究中,多数算法采用的是基于迭代选择的稀疏化策略,但是时间复杂度和稀疏化效果还不够理想.为了进一步改进LS-SVM稀疏化方法的性能,文中提出了一种基于全局代表点选择的快速LS-SVM稀疏化算法(Global-representation-based sparse least squares support vector machine,GRS-LSSVM).在综合考虑数据局部密度和全局离散度的基础上,给出了数据全局代表性指标来评估每个数据的全局代表性.利用该指标,在全部数据中,一次性地选择出其中最具有全局代表性的数据并构成稀疏化后的支持向量集,然后在此基础上求解决策超平面,是该算法的基本思路.该算法对LS-SVM的非迭代稀疏化研究进行了有益的探索.通过与传统的迭代稀疏化方法进行比较,实验表明GRS-LSSVM具有稀疏度高、稳定性好、计算复杂度低的优点.
引用
收藏
页码:132 / 141
页数:10
相关论文
共 14 条
[1]  
Sparse least square support vector machine via coupled compressive pruning[J] . Lixia Yang,Shuyuan Yang,Rui Zhang,HongHong Jin.Neurocomputing . 2014
[2]  
An improved recursive reduced least squares support vector regression[J] . Yong-Ping Zhao,Jian-Guo Sun,Zhong-Hua Du,Zhi-An Zhang,Yu-Chen Zhang,Hai-Bo Zhang.Neurocomputing . 2012
[3]  
Sparse conjugate directions pursuit with application to fixed-size kernel models[J] . Peter Karsmakers,Kristiaan Pelckmans,Kris Brabanter,Hugo hamme,Johan A. K. Suykens.Machine Learning . 2011 (1-2)
[4]   Evolution strategies based adaptive Lp LS-SVM [J].
Wei, Liwei ;
Chen, Zhenyu ;
Li, Jianping .
INFORMATION SCIENCES, 2011, 181 (14) :3000-3016
[5]  
A weighted L q adaptive least squares support vector machine classifiers – Robust and sparse approximation[J] . Jingli Liu,Jianping Li,Weixuan Xu,Yong Shi.Expert Systems With Applications . 2010 (3)
[6]   Optimized fixed-size kernel models for large data sets [J].
De Brabanter, K. ;
De Brabanter, J. ;
Suykens, J. A. K. ;
De Moor, B. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (06) :1484-1504
[7]   Sparse learning for support vector classification [J].
Huang, Kaizhu ;
Zheng, Danian ;
Sun, Jun ;
Hotta, Yoshinobu ;
Fujimoto, Katsuhito ;
Naoi, Satoshi .
PATTERN RECOGNITION LETTERS, 2010, 31 (13) :1944-1951
[8]   Adaptive pruning algorithm for least squares support vector machine classifier [J].
Yang, Xiaowei ;
Lu, Jie ;
Zhang, Guangquan .
SOFT COMPUTING, 2010, 14 (07) :667-680
[9]  
IP-LSSVM: A two-step sparse classifier[J] . B.P.R. Carvalho,A.P. Braga.Pattern Recognition Letters . 2009 (16)
[10]  
Recursive reduced least squares support vector regression[J] . Yongping Zhao,Jianguo Sun.Pattern Recognition . 2008 (5)