On product affine hyperspheres in Rn+1

被引:3
|
作者
Xiuxiu Cheng [1 ,2 ]
Zejun Hu [1 ,2 ]
Marilena Moruz [3 ]
Luc Vrancken [3 ,4 ]
机构
[1] School of Mathematics and Statistics, Zhengzhou University
[2] Henan Key Laboratory of Financial Engineering
[3] Department of Mathematics,KU Leuven
[4] Institut des Sciences et Techniques de Valenciennes (ISTV),Université Polytechnique Hauts de France
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O186.1 [微分几何];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study locally strongly convex affine hyperspheres in the unimodular affine space Rn+1which, as Riemannian manifolds, are locally isometric to the Riemannian product of two Riemannian manifolds both possessing constant sectional curvature. As the main result, a complete classification of such affine hyperspheres is established. Moreover, as direct consequences, 3-and 4-dimensional affine hyperspheres with parallel Ricci tensor are also classified.
引用
收藏
页码:2055 / 2078
页数:24
相关论文
共 50 条
  • [41] The Fractional Carleson Measures on the Unit Ball of Rn+1
    Wang, Dongfang
    Ma, Bolin
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [42] A note on compact Weingarten hypersurfaces embedded in Rn+1
    de Lima, Eudes L.
    ARCHIV DER MATHEMATIK, 2018, 111 (06) : 669 - 672
  • [43] Singularities of Gauss Map of Pedal Hypersurface in Rn+1
    Soliman, M. A.
    Abdel-All, Nassar H.
    Hassan, Soad A.
    Dahi, E.
    LIFE SCIENCE JOURNAL-ACTA ZHENGZHOU UNIVERSITY OVERSEAS EDITION, 2011, 8 (04): : 102 - 107
  • [44] Stability of r-minimal cones in Rn+1
    Barros, A.
    Sousa, P.
    JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (10) : 1407 - 1416
  • [45] A CLASS OF INVERSE CURVATURE FLOWS IN Rn+1, II
    Hu, Jin-Hua
    Mao, Jing
    Tu, Qiang
    Wu, Di
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (05) : 1299 - 1322
  • [46] SYMMETRY AND UNIQUENESS OF EMBEDDED MINIMAL HYPERSURFACES IN Rn+1
    Park, Sung-Ho
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (01) : 21 - 30
  • [47] THE FOURIER-TRANSFORMS OF SMOOTH MEASURES ON HYPERSURFACES OF RN+1
    MARSHALL, B
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1986, 38 (02): : 328 - 359
  • [48] Symmetry of solutions to a class of geometric equations for hypersurfaces in Rn+1
    Chen, Shibing
    Li, Qi-Rui
    Xu, Liang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 401 : 671 - 682
  • [49] Lorentzian affine hyperspheres with constant affine sectional curvature
    Kriele, M
    Vrancken, L
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (04) : 1581 - 1599
  • [50] Rn+1的高阶极小旋转超曲面
    林丽妙
    云南师范大学学报(自然科学版), 2008, (05) : 16 - 20