On the Lucas Base and Computation of Counting Function Mean Value

被引:0
|
作者
LI Hai-long
2.College of Mathematics and Information Science
机构
关键词
Lucas sequence; Fibonacci sequence; mean value; counting fuction;
D O I
暂无
中图分类号
O156.4 [解析数论];
学科分类号
070104 ;
摘要
In this paper, we introduce a new counting function a(m) related to the Lucas number, then use conjecture and induction methods to give an exact formula Ar(N)=α(n), (r=1,2,3) and prove them.
引用
收藏
页码:84 / 89
页数:6
相关论文
共 50 条
  • [1] Mean Value Inequalities for the Digamma Function
    Alzer, H.
    Kwong, M. K.
    ANALYSIS MATHEMATICA, 2023, 49 (01) : 1 - 17
  • [2] On the mean value of a new arithmetical function
    Ma Junqing
    Research on Smarandache Problems in Number Theory (Vol II), Proceedings, 2005, : 143 - 147
  • [3] Mean Value Inequalities for the Digamma Function
    H. Alzer
    M. K. Kwong
    Analysis Mathematica, 2023, 49 : 1 - 17
  • [4] On the mean value of a new arithmetical function
    Yang Cundian
    Liu Duansen
    Research on Smarandache Problems in Number Theory (Vol II), Proceedings, 2005, : 75 - 77
  • [5] On the Mean Value of a New Arithmetical Function
    Wang, Mingjun
    MECHANICAL ENGINEERING AND GREEN MANUFACTURING II, PTS 1 AND 2, 2012, 155-156 : 396 - 400
  • [6] A number theoretic function and its mean value
    Ren Ganglian
    Research on Smarandache Problems in Number Theory (Vol II), Proceedings, 2005, : 19 - 21
  • [7] Mean value inequalities for the Riemann zeta function
    Alzer, Horst
    Kwong, Man Kam
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024,
  • [8] MEAN VALUE, UNIVALENCE, AND IMPLICIT FUNCTION THEOREMS
    Cristea, Mihai
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 54 (02): : 131 - 145
  • [9] Mean value of an arithmetic function associated with the Piltz divisor function
    Karras, Meselem
    Derbal, Abdallah
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (03)
  • [10] An arithmetical function and its mean value formula
    Ren Zhibin
    Zhao Xiaopeng
    Research on Smarandache Problems in Number Theory (Vol II), Proceedings, 2005, : 95 - 97